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Abstract

In this survey, we briefly review some results about the universal dynamics for the defocusing
non-linear Schrödinger equation with logarithmic non-linearity ([5]) without semi-classical constant
and we extend it to the case with semi-classical constant. Such results allow us to pass to the limit when
the semi-classical constant tends to 0 thanks to the Wigner Transform and the Wigner Measure, and
give us the idea to get similar results for the non-linear Vlasov equation with logarithmic non-linearity.
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Chapter 1

Introduction and Main Results

1.1 Introduction

This survey is concerned by the large time behaviour of solutions f = f(t, x, ξ) for the Vlasov equation{
∂tf + ξ · ∇xf − λ∇x(ln ρ) · ∇ξf = 0 t > 0, (x, ξ) ∈ Rd × Rd,
f(0, x, ξ) = fin(x, ξ) (x, ξ) ∈ Rd × Rd,

(1.1)

where λ > 0 and ρ(t, x) =
∫
Rd f(t, x, dξ). Such an equation arises in plasma physics, e.g. for quasi-

neutral plasmas in the core or tokamaks when one focuses on the direction of the magnetic lines by

assuming the electrons to be adiabatic ([9, 7]). There, the equation appears in dimension d = 1 and f

denotes the ionic distribution function.

Due to the derivative of the density ρ with respect to space in the force term∇x(ln ρ), this equation

is highly singular. The Cauchy problem is still very difficult to face and, for the moment, it has only

been proven to be well-posed for very specific initial data. However, this equation has a link with the

Isothermal Euler System when we consider mono-kinetic functions of (1.1) of the form

fin(x, ξ) = ρin(x)dx⊗ δξ=vin(x),

with time-dependent mono-kinetic solutions of the form

f(t, x, ξ) = ρ(t, x)dx⊗ δξ=v(t,x),

because ρ and v have then to solve the isothermal Euler system{
∂tρ+∇x · (ρv) = 0,

∂t(ρv) +∇x · (ρv ⊗ v) + λ∇xρ = 0.
(1.2)

Such a system relates to another equation: a Schrödinger equation. Like before, the potential in this

equation is logarithmic. Formally, for ε > 0, consider

i ε ∂tuε +
ε2

2
∆uε = λuε ln |uε|2, uε(0, .) = uε,in. (1.3)

Any function uε = aεe
iφε
ε where (t, x) 7→ aε(t, x) ∈ Cd and (t, x) 7→ φε(t, x) ∈ R are solutions to{

∂tvε + (vε · ∇)vε + λ∇(ln |aε|2) = 0, vε(0, x) = φ′in(x),

∂taε + vε · ∇aε +
aε
2
∇ · vε = i

ε

2
∆aε, aε(0, x) = ain(x),

(1.4)
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with the relations

φε(t, x) = φin(x)−
∫ t

0

(
1

2
|vε(τ, x)|2 + λ ln |aε(τ, x)|2

)
dτ, vε(t, x) = ∇xφε(t, x), (1.5)

is a solution to (1.3) with uε,in =
√
ρin e

i
φin
ε . When we formally pass to the limit ε→ 0 in (1.4), it yields{

∂tv + (v · ∇) v + λ∇(ln |a|2) = 0, v(0, x) = ∇φin(x),

∂ta+ v · ∇a+
a

2
∇ · v = 0, a(0, x) = ain(x),

(1.6)

which is the symmetrized version of (1.2) with ρ = |a|2.

The Wigner Transform is one of the available tools we have to rigorously relate a Schrödinger equation

to the linked Vlasov equation (with same potential). It revealed good properties to make rigorous the

previous formal link, known as semi-classical limit in physics. Defined by

Wε(x, ξ) =
1

(2π)d

∫
Rd
e−iξ·zuε

(
x+

εz

2

)
uε

(
x− εz

2

)
dz, (1.7)

this tool transforms a function uε ∈ L2(Rd) (which can also be time-dependent, in that case the Wigner

Transform is also time-dependent) into a function Wε called the Wigner Transform of uε defined on the

phase space. This function usually converges (in a suitable sense) to a measure (called Wigner Measure)

solution to the Vlasov equation

∂tf + ξ · ∇xf −∇xV0 · ∇ξf = 0,

when it is linked to uε solution of the corresponding Schrödinger equation

iε ∂tuε +
ε2

2
∆uε = V0uε, (1.8)

when ε tends to 0 as soon as V0 verifies some suitable properties. Moreover, this approach allows to

consider a different framework from mono-kinetic solutions.

1.2 Motivations

The main interest of this survey starts with the article of R. Carles and I. Gallagher [5]. Not only it

provides well-posedness of the Cauchy problem for the Logarithmic Schrödinger Equation for initial

data in some Sobolev space, but they also produce interesting results regarding the behaviour of such a

solution.

Theorem 1.1 ([5, Theorems 1.5. and 1.7.]). Let λ > 0, uin ∈ F(H1) ∩ H1(Rd). Then there exists a

unique, global solution u ∈ L∞loc(R,F(H1) ∩H1(Rd)) of

i ∂tu+
∆u

2
= λu ln |u|2, u(0, .) = uin. (1.9)

Moreover, u ∈ C(R, L2 ∩H1
w(Rd)). Assume uin 6= 0 and rescale this solution to v = v(t, y) by setting

u(t, x) =
1

τ(t)
d
2

||uin||L2

||γ||L2

v

(
t,

x

τ(t)

)
e
i
τ̇(t)
τ(t)

|x|2
2 ,
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where γ(x) = e−
|x|2
2 and τ is the solution of

τ̈ =
2λ

τ
, τ(0) = 1, τ̇(0) = 0. (1.10)

Then τ ∈ C∞(R+) and there exists C such that for all t ≥ 0,∫
Rd

(1 + |y|2 +
∣∣ln |v(t, y)|2

∣∣) |v(t, y)|2 dy +
1

τ(t)2
||∇yv(t)||L2(Rd) ≤ C.

We have moreover ∫
Rd

 1

y

|y|2

 |v(t, y)|2 dy −→
t→∞

∫
Rd

 1

y

|y|2

 γ2(y) dy.

Finally,

|v(t, .)|2 ⇀
t→∞

γ2 weakly in L1(Rd).

Two new features characterizing the dynamics associated to (1.9) are interesting:

• Thanks to the estimate [5, Lemma 1.6.], the dispersion rate is in
(
t
√

ln t
) d

2 . Usually in t
d
2 for the

Schrödinger equation, it is altered by a logarithmic factor due to the non-linearity of the equation,

accelerating the dispersion.

• Up to a rescaling, the modulus of the solution weakly converges for large time to a universal

Gaussian profile.

The existence and uniqueness of the solution can then be easily proved for the general case ε > 0, but we

wonder if the other properties can be generalized with some uniformity in ε and, if so, if the semi-classical

limit propagates such a behaviour. As previously said, the Wigner Transform may be the tool to make the

link we are looking for. This intuition is strengthened by the view of the following result from R. Carles

and A. Nouri [7], recalling the definition of Zhidkov spaces:

Xs(R) =
{
f ∈ L∞(R), f ′ ∈ Hs−1(R)

}
,

Theorem 1.2 ([7, Theorem 1.4., Proposition 5.1. and Theorem 5.4.]). Let λ > 0 and s ≥ 3. Suppose

that (ρin, φin) ∈ Xs(Rd) × C(R) with φ′in ∈ Xs(R) and ρ(x) ≥ ρ0∗ for some positive constant

ρ0∗. Then there exist T > 0 independent of s ≥ 3 and ε ∈ [0, 1] and a unique solution (aε, vε) in

C([0, T ];Xs(R)×Xs(R)) to (1.4) in dimension d = 1, i.e.:{
∂tvε + ∂xvε vε + λ∂x(ln |aε|2) = 0, vε(0, x) = φ′in(x),

∂taε + vε · ∂aε +
aε
2
∂xvε = i

ε

2
∇aε, aε(0, x) = ain(x).

If we suppose in addition φ′in ∈ L2(R), then for every ε > 0, uε = aεe
iφε
ε (where φε is given by (1.5)) is

the unique solution in C([0, T ], Xs(R)) to (1.3) (d = 1) with uε,in =
√
ρin e

i
φin
ε .

Moreover, the Wigner Transform Wε of uε weakly converges inMb([0, T ] × R2) to the bounded

measure

µ(t, dx, dξ) = |a(t, x)|2dx⊗ δξ=v(t,x)

where (v, a) is the solution to (1.4) for ε = 0. Moreover, µ is a solution to (1.1) in d = 1:

∂µ+ ξ ∂xµ− λ∂x(ln ρ) ∂ξµ = 0, where ρ(t, x) =

∫
R
µ(t, x, dξ).
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This result shows that, far from the vacuum, the formal proof made previously actually holds. In

particular, the link with the Isothermal Euler System still holds from the fact that the solutions are

mono-kinetic, which is not the case in general. But, even if this result is enlightening, it will not be helpful

in the case where the initial data is in a Sobolev space. Yet, we still have some other interesting results

in the previous article ([7, Theorem 1.1.] and its proof) for a particular case in which we can compute

explicitly the solutions for the Schrödinger and Euler equations: the Gaussian-monokinetic case.

Theorem 1.3 ([7, Theorem 1.1.] and its proof). Let λ, ρ∗, σ0 > 0 and ω0, p0 ∈ R. Set

ρin(x) = ρ∗e
−σ0x2 , φin = ω0

x2

2
+ p0x, vin(x) = φ′in(x),

and consider the solution τ0 to the ordinary differential equation

τ̈0 =
2λσ0

τ0
, τ0(0) = 1, τ̇0(0) = ω0.

Then τ0 ∈ C∞(R+). Set

ρ(t, x) =
ρ∗
τ0(t)

e
−σ0 (x−p0t)

2

τ0(t)
2 , v(t, x) =

τ̇0(t)

τ0(t)
(x− p0t) + p0

and consider uε the solution of i ε ∂tuε +
ε2

2
∆uε = λuε ln |uε|2,

uε(0, x) = uε,in(x) =
√
ρin(x) ei

φin(x)

ε ∈ F(H1) ∩H1(R),

in L∞(R+,F(H1) ∩H1(R)) ∩ C(R+, L2 ∩H1
w(R)).

Then the Wigner Transform of uε weakly converges when ε→ 0 to the bounded measure

µ(t, dx, dξ) = ρ(t, x)dx⊗ δξ=v(t,x),

solution to (1.1) with µ(0, dx, dξ) = ρin(x)dx⊗ δξ=vin(x) since (ρ, v) is solution to (1.2).

In particular, in the same theorem, it is shown that

τ0(t) ∼
t→∞

2 t
√
λσ ln t,

which yields
τ0(t)2

σ
∼

t→∞
4λ t ln t ∼

t→∞
τ(t)2

where τ is defined in (1.10). Therefore, we still have for this case the same dispersion, and we see that, up

to the same rescaling as before, ρ converges strongly to γ2 in L1. This result brings us to think that the

behaviour found for the Schrödinger Equation still holds for the Vlasov Equation. This has already been

proven for the case of general mono-kinetic solutions, i.e. for solutions of (1.2), in [4].

1.3 Main Results

The first idea was to generalize Theorem 1.1 to the case ε > 0 with some interesting initial data uε,in,

after rescaling in a good way, in order to have some uniformity in ε in the estimates. Such results are

presented in the following theorem:
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Theorem 1.4. Let λ > 0, ρin ≥ 0 and φin such that:

√
ρin ∈ F(H1) ∩H1(Rd) \ {0} , φin ∈W 1,1

loc (Rd),
√
ρin∇φin ∈ L2(Rd). (1.11)

For all ε > 0, there exists a unique global solution uε in L∞(R,F(H1) ∩H1) ∩ C(R, L2 ∩H1
w) to (1.3)

with uε,in =
√
ρin e

i
φin
ε : i ε ∂tuε +

ε2

2
∆uε = λuε ln |uε|2,

uε(0, x) = uε,in(x) =
√
ρin(x) ei

φin(x)

ε ∈ F(H1) ∩H1.

Rescale the solution

uε(t, x) =
1

τ(t)
d
2

||√ρin||L2

||γ||L2

vε

(
t,

x

τ(t)

)
e
i
τ̇(t)
τ(t)

|x|2
2 ε , (1.12)

where we recall τ is defined by (1.10) and γ(x) = e−
|x|2
2 .

There exists C independent of ε such that for all t ≥ 0 and all ε > 0,∫
Rd

(
1 + |y|2 +

∣∣ln |vε(t, y)|2
∣∣) |vε(t, y)|2 dy +

ε2

τ(t)2
||∇yvε(t)||2L2(Rd) ≤ C, (1.13)∫ ∞

0

ε2 τ̇(t)

τ3(t)
||∇yvε(t)||2L2(Rd)dt ≤ C. (1.14)

We have moreover three constants C1, C2 ∈ Rd and C3 > 0 (which do not depend on t or on ε) such that

for all t > 1 and all ε > 0, ∫
Rd
y |vε(t, y)|2 dy =

1

τ(t)
(C1t+ C2), (1.15)∣∣∣∣∫

Rd
|y|2 |vε(t, y)|2 dy −

∫
Rd
|y|2 γ2(y) dy

∣∣∣∣ ≤ C3
τ̇(t) + 1

τ̇(t)2
, (1.16)

which yields ∫
Rd

 1

y

|y|2

 |vε(t, y)|2 dy −→
t→∞

∫
Rd

 1

y

|y|2

 γ2(y) dy (1.17)

uniformly in ε. Finally,

|vε(t, .)|2 ⇀
t→∞

γ2 weakly in L1(Rd).

Following the idea of the formal link with the Isothermal Euler System, such estimates would allow

us to have the same kind of estimates for ε = 0, as soon as we make the link in a more rigorous way,

which means, following the usual results, that the Wigner Transform of the solution of (1.3) converges to

a measure solution to (1.1). However, our case is more tricky than the usual one. Indeed, the main point

in Theorem 1.2 is that we can actually make (1.4) rigorous (in dimension 1) when we are far from the

vacuum, and this is why we end up with a solution of the Vlasov equation. This is not the case in general

for our approach where uε,in is in a Sobolev space, and we need to take another way. Yet, the properties

on the solution uε that the previous theorem induces are sufficient in order to have the convergence of

the Wigner Transform and to characterize the behaviour of the limit. Defining the following space of test

functions:

A =
{
φ ∈ C0(Rdx × Rdξ), (Fξφ)(x, z) ∈ L1(Rdz , C0(Rdx))

}
,
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and the following spaces

L1
2(Rd) =

{
f ∈ L1(Rd),

∫
Rd
|x|2 |f(x)| dx <∞

}
,

L logL(Rd) =

{
f ∈ L1(Rd),

∫
Rd
|f(x)|| ln |f(x)|| dx <∞

}
,

we can state the main result for this Wigner Measure.

Theorem 1.5. Let λ > 0, ρin ≥ 0 and φin satisfying (1.11) and, for all ε > 0, let uε be the solution in

L∞(R+,F(H1) ∩H1) ∩ C(R+, L2 ∩H1
w) of (1.3). Recall the definition of vε in (1.12). Take Wε (resp.

W̃ε) the Wigner Transform of uε (resp. vε). Then

Wε(0) −→
n→∞

ρin(x)⊗ δξ=∇φin(x) in A′, (1.18)

W̃ε(0) −→
n→∞

||γ2||L1

||ρin||L1

ρin(x)⊗ δξ=∇φin(x) in A′. (1.19)

Moreover there exists a subsequence (εn)n such that εn −→
n→∞

0 and two (non-negative) finite measures

W and W̃ in L∞((0,∞),M(Rd × Rd)) such that for every p ∈ [1,∞)

Wεn ⇀
n→∞

W in Lploc((0,∞),A′),

W̃εn ⇀
n→∞

W̃ in Lploc((0,∞),A′),

and the relation between Wε and W̃ε given by

Wε(t, x, ξ) =
||ρin||L1

||γ2||L1

W̃ε

(
t,

x

τ(t)
, τ(t) ξ − τ̇(t)x

)
(1.20)

still holds after passing to the limit. Furthermore, we have

W̃ (t,Rd × Rd) = ||γ2||L1 for all t ≥ 0, (1.21)

ρ̃(t, y) =

∫
Rd
W̃ (t, y, dη) ∈ L∞((0,∞), L1

2 ∩ L logL(Rd)) ∩ C(R+,W−1,1 ∩ L1
w(Rd)), (1.22)

and there exist three constants C0 > 0 and C1, C2 ∈ Rd such that for all t ≥ 0,

1

τ(t)2

∫∫
Rd×Rd

|η|2 W̃ (t, dy, dη) ≤ C0,∫ ∞
0

τ̇(t0)

τ3(t0)

∫∫
Rd×Rd

|η|2 W̃ (t0, dy, dη)dt0 ≤ C0,∫
Rd
y ρ̃(t, y) dy =

1

τ(t)
(C1t+ C2),

which yield ∫
Rd

(
1

y

)
ρ̃(t, y) dy −→

t→∞

∫
Rd

(
1

y

)
γ2(y) dy.

Finally,

ρ̃(t, .) ⇀
t→∞

γ2 weakly in L1(Rd).
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Therefore, the main behaviour of the solution of the Logarithmic Schrödinger Equation in Theorem

1.1 is propagated to the Wigner Measure, thanks to the uniformity of the bounds found in Theorem 1.4.

However, we do not prove the fact that the Wigner Measure satisfies (1.1). Indeed, to the best of our

knowledge, the results to prove it rigorously in the general case ask for a little bit of regularity for the

potential V , in both linear and non-linear cases, whereas our potential ln |uε|2 is highly singular and

non-linear.

Remark 1.1. The convergence for the second momentum stated in (1.16) is uniform in ε. Yet, we still

can not conclude for the case "ε = 0" because we do not know if
∫
Rd |y|

2 ρ̃ε(t, y) dy converges to∫
Rd |y|

2 ρ̃(t, y) dy. This would have been the case if, for example, we had a bound of a higher moment,

but we do not.

Remark 1.2. • As a straightforward consequence, with the previous notations of Theorem 1.4, we

infer the slightly weaker property that |vε(t)|2 converges to γ2 in Wasserstein distance:

W2

(
|vε(t)|2

π
d
2

,
γ2

π
d
2

)
−→
t→∞

0,

where we recall that the Wasserstein distance is defined, for ν1 and ν2 probability measures, by

Wp(ν1, ν2) = inf

{(∫
Rd×Rd

|x− y|p dµ(x, y)

) 1
p

; (πj)#µ = νj

}
,

where µ varies among all probability measures on Rd × Rd, and πj : Rd × Rd → Rd denotes the

canonical projection onto the j-th factor (see e.g. [13]).

• In the same way, with the notations of Theorem 1.5, thanks to the bound uniform in t for |y|2 ρ̃(t) in

L1 and the weak convergence of ρ̃(t) as t→∞, we infer that for every p ∈ [1, 2),
∫
Rd |y|

p ρ̃(t) dy

converges to
∫
Rd |y|

p γ2 dy (see Appendix B for a proof). Therefore, ρ̃(t) converges to γ2 in

Wasserstein distance:

Wp

(
ρ̃(t)

π
d
2

,
γ2

π
d
2

)
−→
t→∞

0,

for every p ∈ [1, 2). This remark shows that we might have some uniformity in ε ∈ [0, 1] for the

convergence of |vε(t)|2 to γ2 in Wasserstein distance Wp for every p ∈ [1, 2).

We are now interested in the behaviour of the solutions of the Logarithmic Vlasov Equation. In the

light of the previous theorem and of Theorem 1.3, our intuition would say that any solution of (1.1) has the

same behaviour as previously. However, the potential is actually so much singular that the way to formalize

(1.1) is very difficult, and therefore getting solutions is even more difficult in the general case. Yet, we

can still compute some explicit solutions, like in Theorem 1.3 for the case of Gaussian-monokinetic initial

data. We also have another class of explicit solutions, which is in some way an extension of the previous

case: the "Gaussian-Gaussian" case.

Theorem 1.6. 1. For c1,0 > 0, c2,0 > 0 and c1,1, B0, B1 ∈ R, set

C̃ := c1,0 c2,0, (1.23)
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and consider c1 ∈ C∞(R+) the solution of the ordinary differential equation

c̈1 =
2λ

c1
+
C̃2

c3
1

, (1.24)

c1(0) = c1,0, (1.25)

ċ1(0) = c1,1. (1.26)


Then, set

c2(t) :=
C̃

c1(t)
, (1.27)

b1(t) := B1t+B0, (1.28)

b2(t, x) :=
ċ1(t)

c1(t)
(x−B1 t−B0) +B1. (1.29)

The function

f(t, x, ξ) =
1

π c1(t) c2(t)
exp

[
−|x− b1(t)|2

c1(t)2
− |ξ − b2(t, x)|2

c2(t)2

]
satisfies (1.1). Moreover, if we rescale to f̃ = f̃(t, y, η) like previously

f(t, x, ξ) :=
1

||γ2||L1

f̃

(
t,

x

τ(t)
, τ(t) ξ − τ̇(t)x

)
,

and define

ρ̃(t, y) :=

∫
Rd
f(t, y, η) dη,

there holds

ρ̃(t, .) −→
t→∞

γ2 strongly in L1(R).

2. Let T ∈ (0,+∞], b1 = b1(t) ∈ C1([0, T ),R), c1 = c1(t) ∈ C1([0, T ), (0,∞)), b2 = b2(t, x) ∈
C1([0, T )× R,R) and c2 = c2(t, x) ∈ C1([0, T )× R, (0,∞)) such that

f(t, x, ξ) =
1

(π c1(t) c2(t, x))d
exp

[
−|x− b1(t)|2

c1(t)2
− |ξ − b2(t, x)|2

c2(t, x)2

]
is a solution of (1.1). Then c2 does not depend on x, all the functions are C2 and (1.23)-(1.29) hold.

We see that the behaviour still holds, with the better result of strong convergence in L1 to γ2 for ρ̃,

like what we had in Theorem 1.3.

However, we are not interested in the formalization of the equation (1.1) for the general case in this

paper, and we focus only on the results by assuming some formal properties to be verified by such a

"solution". The first properties that come to mind are the usual properties for Vlasov equations: the mass

conservation and the energy conservation. Following the results found for the Wigner Measure, we also

want equations which are similar to the isothermal Euler system, in order to proceed like the proofs of

the above results, which are equations involving ∂tρ and ∂t
∫
ξf(t, x, dξ), but also those involving some

second momentum, in x for instance. Such remarks lead us to define:

MΣlog =

{
µ ∈M(Rdx × Rdξ), ρ(x) =

∫
Rdξ
µ(x, dξ) ∈ L1(Rd) ∩ L logL (Rd)

}
,

M2 =

{
µ ∈M(Rdx × Rdξ),

∫∫
Rd×Rd

(|x|2 + |ξ|2) dµ <∞
}
,

whereM stands for the space of non-negative measure. This yields the following theorem:
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Theorem 1.7. Let f = f(t, x, ξ) ∈ L∞loc(0,∞;MΣlog ∩ M2) satisfying f(0, x, ξ) = fin(x, ξ) ∈
MΣlog ∩M2 \ {0} and

d
dt

(∫∫
Rd×Rd

f(t, dx, dξ)

)
= 0, (1.30)

d
dt

(
1

2

∫∫
Rd×Rd

|ξ|2 f(t, dx, dξ) + λ

∫
Rd
ρ(t, x) ln ρ(t, x)dx

)
= 0, (1.31)

∂tρ(t, x) +∇x ·
(∫

Rd
ξ f(t, x, dξ)

)
= 0, (1.32)

∂t

∫
Rd
ξ f(t, x, dξ) +∇x ·

∫
Rd
ξ ⊗ ξ f(t, x, dξ) + λ∇xρ(t, x) = 0, (1.33)

d
dt

(∫∫
Rd×Rd

|x|2 f(t, dx, dξ)

)
= 2

∫∫
Rd×Rd

x · ξ f(t, dx, dξ), (1.34)

d
dt

(∫∫
Rd×Rd

x · ξ f(t, dx, dξ)

)
=

∫∫
Rd×Rd

|ξ|2 f(t, dx, dξ) + λ

∫
Rd
ρ(t, x)dx. (1.35)

Then ρ(t, x) =
∫
Rd f(t, x, dξ) ∈ C(R+, L1

w(Rd)). Rescale the solution to f̃ = f̃(t, y, η) by setting:

f(t, x, ξ) =
M

||γ2||L1

f̃

(
t,

x

τ(t)
, τ(t)ξ − τ̇(t)x

)
, (1.36)

where M = fin(Rd × Rd), which leads to

ρ(t, x) =
M

τd(t) ||γ2||L1

ρ̃

(
t,

x

τ(t)

)
,

where ρ̃(t, y) =
∫
Rd f̃(t, y, dη). There exists C > 0 such that for all t ≥ 0,(∫

Rd

(
| ln ρ̃(t, y) |+ |y|2

)
ρ̃(t, y) dy +

1

τ2(t)

∫∫
Rd×Rd

|η|2f̃(t, dy, dη)

)
≤ C. (1.37)

We have moreover ∫
Rd

 1

y

|y|2

 ρ̃(t, y) dy −→
t→∞

∫
Rd

 1

y

|y|2

 γ2(y) dy.

Finally,

ρ̃(t, .) ⇀
t→∞

γ2 weakly in L1(Rd).

The assumptions (1.34) and (1.35) should come from (1.32) and (1.33). However, we still add those

equations in the assumptions to make the theorem completely rigorous.

Remark 1.3. The result ρ ∈ C(R+, L1
w(Rd)) is important in order to ensure that ρ(t) is actually well-

defined for all t > 0 (and not only almost everywhere), despite the weaker regularity of f . This result

actually comes from the assumption (1.32) along with
∫
Rd |ξ| f(t, x, dξ) ∈ L∞loc(0,∞;M(Rd)).

The previous theorem predicts the behaviour of most of the involved expressions, it only remains∫∫
Rdx×Rdξ

|ξ|2f(t, dx, dξ). This is computed in the following corollary.

Corollary 1.1. Let f satisfying the hypothesis of Theorem 1.7. Then it also satisfies∫∫
Rdx×Rdξ

|ξ|2f(t, dx, dξ) ∼
t→∞

2λdM ln t.

Remark 1.4. In the same way as before, ρ̃ converges to γ2 in Wasserstein distance:

W2

(
ρ̃(t)

π
d
2

,
γ2

π
d
2

)
−→
t→∞

0.
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1.4 Plan of the proofs

The plan of the rest of the paper is the following. In Section 2.1, we recall how we get the existence and

uniqueness of a solution to (1.3) with more general uε,in, and then we prove Theorem 1.4. In Section 2.2,

we first define the Wigner Transform and state some general properties. Then, we prove Theorem 1.5.

Last, Section 2.3 is devoted to the proofs of Theorems 1.6 and 1.7 and Corollary 1.1.
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Chapter 2

Results and proofs

2.1 Schrödinger Equation with logarithmic non-linearity

We are interested in the properties of the solution of the Schrödinger Equation with logarithmic non-

linearity:

iε ∂tuε +
ε2

2
∆uε = λuε ln |uε|2, in D′, uε(0, x) = uε,in(x),

with λ > 0, ε > 0 and uε,in given. First, we will recall the existence and uniqueness of such a solution

when the initial data uε,in has some good properties before going into the proof of Theorem 1.4.

2.1.1 Existence and uniqueness of a solution

First, recall the Logarithmic Schrödinger Equation (1.9) like above with ε = 1:

i ∂tu+
1

2
∆u = λu ln |u|2, u(0, x) = uin(x),

with λ > 0 and uin given. This equation has already been studied in [5] and [8], and we have some

results for existence and uniqueness. We recall before the mass, angular momentum and energy for some

f ∈
{
g ∈ H1(Rd), |g|2 ln |g|2 ∈ L1

}
:

M(f) := ||f ||2L2(Rd),

J(f) := Im

∫
Rd
f(x)∇f(x) dx,

E(f) :=
1

2
||∇f ||2L2(Rd) + λ

∫
Rd
|f(x)|2 ln |f(x)|2 dx.

Such definitions allow us to correctly state the following theorem:

Theorem 2.1 ([5, Theorem 1.5.]). Let the initial data uin belong to F(H1) ∩H1(Rd). There exists a

unique, global solution u ∈ L∞loc(R;F(H1) ∩H1(Rd)) ∩ C(R, L2 ∩H1
w(Rd)) to (1.9). Moreover, the

mass M(u(t)), the angular momentum J(u(t)) and the energy E(u(t)) are independent of time.

Remark 2.1. Weaker hypothesis are possible in order to have existence and uniqueness, in particular

substituting F(H1) by F(Hα) for α ∈ (0, 1] (see [5]). However, this hypothesis is not helpful in the

following, and we stick to the assumption uin ∈ F(H1) ∩H1(Rd).
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We see that (1.3) and (1.9) are actually linked through a simple change of variables: if uε satisfies

(1.3), then wε(t, x) = uε(εt, εx) satisfies (1.9) with wε(0, x) = uε(εx) ∈ F(H1) ∩H1(Rd) if uε,in ∈
F(H1)∩H1(Rd). Such remark allows us to state the existence and uniqueness for the equation (1.3) and

some first properties, after modification of the angular momentum and energy:

Jε(f) := Im ε

∫
Rd
f(x)∇f(x) dx,

Eε(f) :=
ε2

2
||∇f ||2L2(Rd) + λ

∫
Rd
|f(x)|2 ln |f(x)|2 dx.

Corollary 2.1. Let ε > 0 and uε,in belong to F(H1) ∩H1(Rd). There exists a unique, global solution

uε ∈ L∞loc(R;F(H1) ∩ H1(Rd)) ∩ C(R, L2 ∩ H1
w(Rd)) to (1.9). Moreover, the mass M(uε(t)), the

angular momentum Jε(uε(t)) and the energy Eε(uε(t)) are independent of time.

2.1.2 Properties of the solution

In view of Theorem 1.4, we now fix uε,in like in the hypothesis of the theorem:

uε,in(x) =
√
ρin(x) ei

φin(x)

ε ,

where ρin ≥ 0 and φin are such that

√
ρin ∈ F(H1) ∩H1(Rd) \ {0} , φin ∈W 1,1

loc (Rd),
√
ρin∇φin ∈ L2(Rd),

so that for all ε > 0,

uε,in ∈ F(H1) ∩H1(Rd),

which yields a solution uε ∈ L∞loc(R;F(H1) ∩ H1(Rd)) ∩ C(R, L2 ∩ H1
w(Rd)) to (1.3) thanks to the

previous corollary.

Rescaling the solution

Following the ideas of Theorem 1.1, we want to rescale the solutions in order to find similar properties on

this rescaling. As we are aware that the main oscillations for (1.3) should be of order 1
ε , especially since

the oscillations of uε,in are of the same order, we can guess that the good rescaling is (1.12), the one we

introduced in Theorem 1.4, recalled here:

uε(t, x) =
1

τ(t)
d
2

||√ρin||L2

||γ||L2

vε

(
t,

x

τ(t)

)
e
i
τ̇(t)
τ(t)

|x|2
2 ε ,

where γ(x) = e−
|x|2
2 and τ is the solution of (1.10):

τ̈ =
2λ

τ
, τ(0) = 1, τ̇(0) = 0,

so that we have, when t→∞ (see [5, Lemma 1.6]),

τ(t) = 2t
√
λ ln t

(
1 +O

(
ln ln t

ln t

))
.

Writing (1.3) in terms of vε yields

iε ∂tvε +
ε2

2τ(t)2
∆yvε = λvε ln

∣∣∣∣vεγ
∣∣∣∣2 − λ (d ln τ(t)− 2 ln

||√ρin||L2

||γ||L2

)
vε.
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The last term is totally harmless, as it can be removed by changing vε into vε e−i
θ
ε where

θ = θ(t) = λd

∫ t

0
ln τ(s) ds− 2λt ln

||√ρin||L2

||γ||L2

.

Thus, we obtain the system

i ε ∂tvε +
ε2

2τ(t)2
∆yvε = λvε ln

∣∣∣∣vεγ
∣∣∣∣2, vε(0, x) =

||γ||L2

||√ρin||L2

uε,in.

Estimates

We now define the (modified) energy:

Eε(t) = Im

∫
Rd
vε(t, y) ε ∂tvε(t, y) dy = Eεkin(t) + λ Eεent(t),

where

Eεkin(t) =
ε2

2 τ(t)2
||∇vε||2L2 ,

Eεent(t) =

∫
Rd
|vε(t, y)|2 ln

∣∣∣∣vε(t, y)

γ(y)

∣∣∣∣2,
are respectively the modified kinetic and entropy energies.

Then we easily compute:

Ėε = −2
τ̇(t)

τ(t)
Eεkin. (2.1)

Following the ideas of [5], we should now have bounds independent of ε if Eε(0) is bounded

independently of ε. Thanks to the assumptions (1.11), we can compute explicitly Eε(0) in terms of ρin
and φin:

Eε(0) =
ε2

2

||γ2||L1

||√ρin||2L2

||∇uε,in||2L2 + λ
||γ2||L1

||√ρin||2L2

ln
||γ2||L1

||√ρin||2L2

∫
|uε,in|2 dx

+ λ
||γ2||L1

||√ρin||2L2

∫
|uε,in|2 ln |uε,in|2 dx+ λ

||γ2||L1

||√ρin||2L2

∫
|uε,in|2 |y|2 dx

=
ε2

2

||γ2||L1

||√ρin||2L2

∣∣∣∣∣∣∣∣∇ (
√
ρin) + i

∇φin
ε

√
ρin

∣∣∣∣∣∣∣∣2
L2

+ λ
||γ2||L1

||√ρin||2L2

ln
||γ2||L1

||√ρin||2L2

||√ρin||2L2

+ λ
||γ2||L1

||√ρin||2L2

∫
ρin ln ρin dx+ λ

||γ2||L1

||√ρin||2L2

∫
ρin |y|2 dx

=
||γ2||L1

2 ||√ρin||2L2

||ε∇ (
√
ρin) + i∇φin

√
ρin||2L2 + λ ln

||γ2||L1

||√ρin||2L2

||γ2||L1

+ λ
||γ2||L1

||√ρin||2L2

∫
ρin ln ρin dx+ λ

||γ2||L1

||√ρin||2L2

∫
ρin |y|2 dx

The hypothesis (1.11) actually yields
∫
ρin | ln ρin | dy <∞. Indeed, ρin ≥ 0, and

ρin | ln ρin | ≤ Cδ (ρ1−δ
in + ρ1+δ)

for all δ ∈ [0, 1). Then, the two bounds∫
ρ1+δ
in ≤ Cδ||

√
ρin||1+δ

H1
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for δ > 0 small enough thanks to Sobolev embeddings and∫
ρ1−δ
in ≤ Cδ||

√
ρin||2−2δ−dδ

L2 |||x|√ρin||dδL2

for 0 < δ < 2
d+2 yield

∫
ρin | ln ρin | dy <∞.

Moreover,∇
(√
ρin
)
∈ L2(Rd) and all the other terms are well-defined thanks to (1.11). Therefore

we have a bound independent of ε as previously announced. Thus, this leads to the result, which are the

estimates (1.13) and (1.14) of Theorem 1.4 stated in the following lemma:

Lemma 2.1. Under the assumption (1.11), we have

sup
t≥0
ε>0

(∫
Rd

(
| ln |vε|2(t, y) |+ |y|2

)
|vε|2(t, y) dy +

ε2

2τ2(t)

∫
Rd
|∇vε|2(t, y) dy

)
<∞,

and ∫ ∞
0

ε2 τ̇(t)

τ3(t)

∫
Rd
|∇vε|2(t, y) dydt ≤ C.

Proof. Write

Eεent =

∫
|vε|2 ln |vε|2 +

∫
|y|2 |vε|2,

and ∫
|vε| ln |vε|2 =

∫
|vε|>1

|vε|2 ln |vε|2 +

∫
|vε|≤1

|vε|2 ln |vε|2.

Then, separating the positive and negative parts of the modified energy and using the fact that this modified

energy is non-increasing, we have

Eε+ := Eεkin + λ

∫
|vε|>1

|vε|2 ln |vε|2 + λ

∫
|y|2 |vε|2 ≤ Eε(0)− λ

∫
|vε|≤1

|vε| ln |vε|2 ≤ C + Eε−,

where Eε− = −λ
∫
|vε|≤1 |vε| ln |vε|

2 ≥ 0. This term is controlled by

Eε− ≤ Cδ
∫
Rd
|vε|2−δ,

for all δ ∈ (0, 2). Moreover, we have the estimate∫
Rd
|vε|2−δ ≤ Cδ ||vε||

2−(1+ d
2 )δ

L2 ||yvε||
dδ
2

L2 = Cδ ||γ||
2−(1+ d

2 )δ
L2 ||yvε||

dδ
2

L2 ,

as soon as 0 < δ < 2
d+2 . Taking (for example) δ = 1

d+2 , this implies

Eε− ≤ Cd (Eε+)
d

4(d+2)

Eε+ ≤ Cd
(

1 + (Eε+)
d

4(d+2)

)
,

and thus Eε+ ≤ C̃ with C̃ which does not depend on t and ε since d
4(d+2) < 1. Then we also have Eε− ≤ C0,

and it follows that Eε+ + Eε− and Eε are bounded uniformly in t ≥ 0 and in ε > 0.

Last, (1.14) follows from (2.1) and the fact that Eε(t) is bounded uniformly in ε > 0 and in t ≥ 0.

Remark 2.2. Actually, we have Eε ≥ Eεent ≥ 0 thanks to the Csiszár-Kullback inequality, which reads (see

[1, Theorem 8.2.7])

Eεent(t) ≥
1

2||γ2||L1(Rd)

∣∣∣∣ |vε|2(t)− γ2
∣∣∣∣2
L1(Rd)

.

This inequality shows that, if we had Eεent(t) −→
t→∞

0 (for example, Eε(t) −→
t→∞

0), then we would have∣∣∣∣ |vε|2(t)− γ2
∣∣∣∣2
L1(Rd)

−→
t→∞

0 and then strong convergence would follow, but we cannot reach this

conclusion in the general case.
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Convergence of some quadratic quantities

We now prove (1.15)-(1.17), as stated in the next lemma.

Lemma 2.2. Under the assumptions of Theorem 1.4, there holds for some constants C1, C2 ∈ Rd and

C3 > 0 (which do not depend on t and on ε) and for all t > 1 and all ε > 0,∫
Rd
y |vε(t, y)|2 dy =

1

τ(t)
(C1t+ C2),∣∣∣∣∫

Rd
|y|2 |vε(t, y)|2 dy −

∫
Rd
|y|2 γ2(y) dy

∣∣∣∣ ≤ C3
τ̇(t) + 1

τ̇(t)2
,

which yields ∫
Rd

 1

y

|y|2

 |vε(t, y)|2 dy −→
t→∞

∫
Rd

 1

y

|y|2

 γ2(y) dy

uniformly in ε.

Proof. For the first equation, following the ideas of [5, Lemma 4.2], we introduce

Iε1(t) = Im ε

∫
Rd
vε(t, y)∇vε(t, y) dy, Iε2(t) =

∫
Rd
y |vε(t, y)|2 dy,

and we compute

İε1 = −2λIε2 , İε2 =
1

τ2(t)
Iε1 .

Set Ĩε2 = τ Iε2 : we have ¨̃Iε2 = 0 and therefore Iε2(t) = 1
τ(t)(−Iε1(0) t+ Iε2(0)). Then, computing the two

terms in the right-hand side shows that they do not depend on ε:

Iε1(0) =
||√ρin||L2

||γ||L2

∫
Rd
ρin(x)∇φin(x) dx,

Iε2(0) =
||√ρin||L2

||γ||L2

∫
Rd
x ρin(x) dx,

which leads to the first equality. We now go back to the conservation of energy for uε,

ε2

2
||∇uε||2L2+λ

∫
Rd
|uε(t, x)|2 ln |uε(t, x)|2 dx =

1

2
||ε∇ (

√
ρin) + i

√
ρin∇φin||2L2+

∫
Rd
ρin(x) ln ρin(x) dx,

and translate this property into estimates on vε

Ekin +
τ̇2

2

∫
|y|2 |vε|2 − ε

τ̇

τ
Im

∫
vε(t, y) y∇vε(t, y) dy + λ

∫
|vε|2 ln |vε|2 − λd ||γ2||L1 ln τ

+ 2λ ||γ2||L1 ln

(∣∣∣∣√ρin∣∣∣∣L2

||γ||L2

)
=

1

2
||ε∇ (

√
ρin) + i

√
ρin∇φin||2L2 +

∫
Rd
ρin(x) ln ρin(x) dx.

Therefore, we obtain∣∣∣∣ τ̇2

2

∫
|y|2 |vε|2 − λd ||γ2||L1 ln τ

∣∣∣∣ ≤ ∣∣∣∣ε τ̇τ Im

∫
vε(t, y) y∇vε(t, y) dy

∣∣∣∣
+

∣∣∣∣12 ||ε∇ (
√
ρin) + i

√
ρin∇φin||2L2 +

∫
Rd
ρin(x) ln ρin(x) dx

−λ
∫
|vε|2 ln |vε|2 − 2λ ||γ2||L1 ln

(∣∣∣∣√ρin∣∣∣∣L2

||γ||L2

)∣∣∣∣∣ .
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In the right hand side, the second group of terms is bounded thanks to the bounds previously found

in (1.13) for the last two terms and the assumptions (1.11) (along with the considerations previously

discussed) for the first two terms of this group. For the bound of the first term, we use ||vε(t)||L2 = ||γ||L2

and the fact that ετ ∇vε is uniformly bounded in L∞t L
2
y. It follows:∣∣∣∣ τ̇2(t)

2

∫
|y|2 |vε|2 − λd ||γ2||L1 ln τ(t)

∣∣∣∣ ≤ C(τ̇(t) + 1),

with a constant C > 0 which does not depend on time and on ε. Moreover, the equation satisfied by τ

leads to
τ̇2

2
= 2λ ln τ,

which gives in the above inequality for all t > 1∣∣∣∣∫ |y|2 |vε|2 − d

2
||γ2||L1

∣∣∣∣ ≤ C τ̇(t) + 1

τ̇2(t)
.

The last statement follows from the first two ones, and the fact that the L2-norm is constant.

Equation on ρε

First, we define

ρε = |vε|2,

Jε = Im(ε vε∇vε).

Then we compute

∂tρε +
1

τ2(t)
∇ · Jε = 0 in D′. (2.2)

Moreover, in the same way as in [5], we also obtain

∂tJε + λ∇ρε + 2λ y ρε =
ε2

4 τ2(t)
∆∇ρε −

ε2

τ2(t)
∇ · (Re(∇vε ⊗∇vε)). (2.3)

Putting (2.2) and (2.3) together leads to

∂t(τ
2 ∂tρε) = λLρε −

ε2

4 τ2(t)
∆2ρε +

ε2

τ2(t)
∇ ·
(
∇ · (Re(∇vε ⊗∇vε))

)
. (2.4)

where L = ∆ +∇ · (2y .) is a Fokker-Plank operator.

Change of time variable

Using the same change of time variable as in [5]

s =
1

2
ln τ̇(t),

we obtain the same kind of equation (using the notation f(t) = f̌(s(t)) for the change of time variable)

∂sρ̌ε −
2λ
ˇ̇τ2
∂sρ̌ε +

λ
ˇ̇τ2
∂2
s ρ̌ε = Lρ̌ε −

ε2

4λ τ̌2(s)
∆2ρ̌ε +

ε2

λ τ̌2(s)
∇ ·
(
∇ · (Re(∇v̌ε ⊗∇v̌ε))

)
, (2.5)

and the inequality (1.14) becomes∫ ∞
0

(
εˇ̇τ(s)

τ̌(s)

)2

||∇v̌ε(s)||2L2 ds ≤ C <∞. (2.6)
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Limit as s→∞

Again, we will use the same strategy as in [5]. Take sn →
n→∞

∞. By de la Vallée-Poussin and Dunford-

Pettis theorems with the bounds on ρ̌ε, we have a subsequence sφ(n) such that, using the notation fn for

fn(s) = f(s+ sφ(n)),

ρ̌ε,n = ρ̌ε(s+ sφ(n), y) ⇀ ρ̌ε∞ ∈ L∞([−1,∞), L1
2 ∩ L logL) in Lploc([−1,∞), L1

y)

for every p ∈ [1,∞). Property (2.6) implies that

ε2

τ̌2
n(t)
∇ ·
(
∇ · (Re(∇v̌ε,n ⊗∇v̌ε,n))

)
−→
n→∞

0, in L1
s(−1,∞;W−2,1(Rd)).

Moreover, the L1-bound on ρ̌ε(s) leads to

ε2

4λ τ̌2
n(t)

∆2ρ̌ε,n −→
n→∞

0, in L∞s (−1,∞;W−4,1(Rd)).

Passing the equation (2.5) to the weak limit yields

∂sρ̌
ε
∞ = Lρ̌ε∞.

Thanks to the bounds on ρ̌∞, we know that (see for instance [2, Corollary 2.17]) the solution actually

converges to the usual Gaussian:

lim
s→∞
||ρ̌ε∞ − γ2||L1(Rd) = 0.

The next step is to show that ρ̌∞ is actually independent of time. Come back to equation (2.2). We

still have some bounds on Jε thanks to (1.13) and (1.14), which are, for every t ≥ 0 and ε > 0 :

1

τ(t)

∫
Rd

(1 + |y|)|Jε(t, y)| dy ≤ C,∫ ∞
0

τ̇(t)

τ(t)

(
1

τ(t)
||Jε(t)||L1

)2

dt ≤ C.

In terms of s, those inequalities and the equation (2.2) read

1

τ̌(s)

∫
Rd

(1 + |y|) |J̌ε(s, y)| dy ≤ C,∫ ∞
0

( ˇ̇τ(s)

τ̌(s)

∫
Rd
|J̌ε(s, y)|dy

)2

ds ≤ C,

∂sρ̌ε +
ˇ̇τ(s)

λ τ̌(s)
∇ · J̌ε = 0. (2.7)

Then, the second inequality implies
ˇ̇τ

τ̌
J̌ε ∈ L2

sL
1
y,

which yields
ˇ̇τn
τ̌n
∇ · J̌ε,n −→

n→∞
0 in L2

s,loc(−1,∞;W−1,1),

hence

∂sρ̌
ε
∞ = 0, (2.8)

which was needed. So ρ̌ε∞(s) = γ2 for all s ∈ (−1,∞). The limit being unique, we do not need any

extraction:

ρ̌ε(.+ s) ⇀
s→∞

γ2 in Lploc([−1,∞), L1
y) (2.9)

for every p ∈ [1,∞).
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Punctual limit

The previous result shows that the weak limit γ2 of ρ̌ε(.+ s) in Lploc([−1,∞), L1
y) for every p ∈ [1,∞)

does not depend on time. Therefore, we can hope a weak punctual convergence, i.e. that ρ̌ε(s) converges

weakly in L1
y as s → ∞ to γ2. Such a result may only be true if the oscillation in time of ρ̌ε are not

too strong, but this should actually be the case thanks to (2.7) since ˇ̇τ
τ̌ J̌ε has some integrability property:

ˇ̇τ
τ̌ J̌ε ∈ L

2
sL

1
y. Furthermore, the change of time variable has the following properties:

s(t) ∼
t→∞

1

4
ln ln t −→

t→∞
∞.

Therefore, if we prove such a weak convergence for the time variable s, it will also prove the punctual

convergence for the time variable t.

First of all, come back to the equation (2.7). Take b ≤ a ≤ 0, φ ∈ C∞c (Rd) and θn ∈ W 1,∞(R)

satisfying

0 ≤ θn ≤ 1, supp θn ⊂ [0, 2b] θn(s) −→
n→∞

1[a,b](s) for all s ∈ R+ \ {a, b} ,

θ′n −→n→∞ δa − δb inM(R+).

The equation (2.2) reads:∫∫
R+
s ×Rd

ρ̌ε(s, y)φ(y) θ′n(s) dyds = − 1

λ

∫∫
R+
s ×Rd

ˇ̇τ(s)

τ̌(s)
J̌ε(s, y)∇φ(y) θn(s) dyds.

The right-hand side converges as n→∞ thanks to dominated convergence:

ˇ̇τ(s)

τ̌(s)
J̌ε(s, y)∇φ(y) θn(s) −→

n→∞
J̌ε(s, y)∇φ(y)1[a,b](s) for all s ∈ R+ \ {a, b} , y ∈ Rd,∣∣∣∣ ˇ̇τ(s)

τ̌(s)
J̌ε(s, y)∇φ(y) θn(s)

∣∣∣∣ ≤ ||∇φ||L∞ ˇ̇τ(s)

τ̌(s)
|J̌ε|(s, y)1[0,2b](s) for all s ∈ R+ \ {a, b} , y ∈ Rd.

with
ˇ̇τ(s)
τ̌(s) |J̌ε|(s, y)1[0,2b](s) ∈ L1(R+

s × Rd). Therefore,∫∫
R+
s ×Rd

ˇ̇τ(s)

τ̌(s)
J̌ε(s, y)∇φ(y) θn(s) dyds −→

n→∞

∫ b

a

∫
Rd

ˇ̇τ(s)

τ̌(s)
J̌ε(s, y)∇φ(y) dyds.

For the left-hand side, we get∫∫
R+
s ×Rd

ρ̌ε(s, y)φ(y) θ′n(s) dyds =

∫ ∞
0

(∫
Rd
ρ̌ε(s, y)φ(y) dy

)
θ′n(s) ds,

and since ρ̌ε ∈ C(R+
s , L

1(Rd)), we know that∫
Rd
ρ̌ε(s, y)φ(y) dy is continuous in s. (2.10)

Therefore, we also get convergence for this term thanks to the convergence of θ′n:∫∫
R+
s ×Rd

ρ̌ε(s, y)φ(y) θ′n(s) dyds −→
n→∞

∫ ∞
0

(∫
Rd
ρ̌ε(s, y)φ(y) dy

)
d(δa − δb)

=

∫
Rd
ρ̌ε(a, y)φ(y) dy −

∫
Rd
ρ̌ε(b, y)φ(y) dy.
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Thus, we get:∫
Rd
ρ̌ε(b, y)φ(y) dy −

∫
Rd
ρ̌ε(a, y)φ(y) dy =

1

λ

∫ b

a

∫
Rd

ˇ̇τ(s)

τ̌(s)
J̌ε(s, y)∇φ(y) dyds. (2.11)

Now, in the same way as previously, we have a sequence (sn)n such that sn −→
n→∞

∞ and ρ̌ε∞,0 ∈
L1(Rd) such that ρ̌ε(sn) ⇀

n→∞
ρ̌ε∞,0 in L1(Rd). Take again φ ∈ W 1,∞(Rd), and ψ ∈ C∞c ((0, 1)) such

that ψ ≥ 0 and
∫ 1

0 ψ(s) ds = 1. Then∫
Rd
ρ̌ε(sn, y)φ(y) dy =

∫
Rd
ρ̌ε(sn, y)

∫ 1

0
φ(y)ψ(s) ds dy.

Therefore∫
Rd
ρ̌ε(sn, y)φ(y) dy −

∫ 1

0

∫
Rd
ρ̌ε(s+ sn, y)φ(y)ψ(s) dyds

=

∫ 1

0

∫
Rd

(ρ̌ε(sn, y)− ρ̌ε(sn + s, y))φ(y)ψ(s) dyds

=

∫ 1

0

(∫
Rd

(ρ̌ε(sn, y)− ρ̌ε(sn + s, y))φ(y) dy

)
ψ(s) ds.

But then, thanks to (2.11), for every s ∈ (0, 1),∫
Rd

(ρ̌ε(sn, y)− ρ̌ε(sn + s, y))φ(y) dy = − 1

λ

∫ sn+s

sn

∫
Rd

ˇ̇τ(r)

τ̌(r)
J̌ε(r, y)∇φ(y) dydr,

which yields∣∣∣∣∫
Rd

(ρ̌ε(sn, y)− ρ̌ε(sn + s, y))φ(y) dy

∣∣∣∣ ≤ 1

λ

∫ sn+s

sn

∫
Rd

ˇ̇τ(r)

τ̌(r)
|J̌ε|(r, y) ||∇φ||L∞ dydr.

Therefore, we get∣∣∣∣∫
Rd
ρ̌ε(sn, y)φ(y) dy −

∫ 1

0

∫
Rd
ρ̌ε(s+ sn, y)φ(y)ψ(s) dyds

∣∣∣∣
≤ 1

λ

∫ 1

0

∫ s

0

∫
Rd

ˇ̇τ(sn + r)

τ̌(sn + r)
|J̌ε|(sn + r, y) ||∇φ||L∞ dydrds

≤ ||∇φ||L
∞

λ

∫ 1

0

∫
Rd

ˇ̇τ(sn + r)

τ̌(sn + r)
|J̌ε|(sn + r, y) dydr

≤ ||∇φ||L
∞

λ

(∫ 1

0

( ˇ̇τ(sn + r)

λ τ̌(sn + r)

∫
Rd
|J̌ε|(sn + r, y) dy

)2

dr

) 1
2

≤ ||∇φ||L∞
(∫ sn+1

sn

( ˇ̇τ(s)

λ τ̌(s)

∫
Rd
|J̌ε|(s, y) dy

)2

ds

) 1
2

−→
n→∞

0.

since
ˇ̇τ(s)
τ̌(s) J̌ ∈ L

2
sL

1
y. But then, thanks to the weak convergence of ρ̌ε, we know that∫

Rd
ρ̌ε(sn, y)φ(y) dy −→

n→∞

∫
Rd
ρ̌ε∞,0(y)φ(y) dy,
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and, since φ(y)ψ(s) ∈ L2(−1,∞;L∞(Rd)) with support in time in (0, 1),∫ 1

0

∫
Rd
ρ̃ε(s+ sn, y)φ(y)ψ(s) dyds −→

n→∞

∫ 1

0

∫
Rd
γ2(y)φ(y)ψ(s) dyds =

∫
Rd
γ2(y)φ(y) dy.

Thus, for all φ ∈W 1,∞(Rd), ∫
Rd
ρ̌ε∞,0(y)φ(y) dy =

∫
Rd
γ2(y)φ(y) dy.

This yields ρ̌ε∞,0 = γ2 and hence, the limit being unique,

ρ̌ε(s) ⇀
s→∞

γ2, in L1(Rd).

This limit can then be rewritten in terms of t:

ρε(t) ⇀
t→∞

γ2, in L1(Rd).

This ends the proof of Theorem 1.4. �

Remark 2.3. We see that those uniform estimations and convergence for the quadratic quantities still hold

for more general initial data uε,in. The assumption we need is actually

ε ||∇uε,in||L2 + ||uε,in||L2 +

∫
|uε,in|2

∣∣ln |uε,in|2∣∣+ ||uε,in|y|||L2 ≤ C, (2.12)

for some constant C independent of ε. The convergence to the Gaussian is true for any ε > 0 and any

uε,in, but to have some kind of "uniformity" in such a convergence, we should also need the assumption

(2.12).

2.2 Wigner Transform and Wigner Measure

2.2.1 Definition and general properties

The Wigner Transform and the Wigner Measure are very useful tools allowing to make the mathematical

link between Quantum Mechanics and Classic Mechanics in physics, more known as the semi-classical

limit. They have already been studied a lot, initially by P.L. Lions and T. Paul. We will recall its definition

and some properties which are significant for us, and we will refer to [12, 3, 11, 10] for more precision.

First, we recall its definition already given in (1.7).

Definition 2.1. The Wigner Transform of a sequence uε ∈ L2(Rd) for ε > 0 is defined by

Wε(x, ξ) =
1

(2π)d

∫
RN

e−i ξ·z uε

(
x+

εz

2

)
uε

(
x− εz

2

)
dz = Fzρ̃ε(x, ξ),

where

ρ̃ε(x, z) = uε

(
x+

εz

2

)
uε

(
x− εz

2

)
. (2.13)

If uε ∈ L2(Rd), then for every x ∈ Rd, ρ̃ε is in L1. Therefore the Wigner Transform Wε is

well-defined. A first interesting property easily comes:
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Proposition 2.1. The Wigner Transform Wε is real-valued.

This shows that the Wigner Transform may act in some sense like a density, if we get some non-

negativity. Such non-negativity may come from the fact that ρ̃ε(x, 0) = |uε(x)|2 ≥ 0, a property that

must be taken into account when ε→ 0 when we look at the definition of the Wigner Transform. Before

trying to translate such formal properties, we get some integrability and regularity results for the Wigner

Transform.

Lemma 2.3. For uε ∈ L2(Rd), for every ε > 0, recall the definition of ρ̃ε given in (2.13). It verifies

ρ̃ε ∈ L2(Rd × Rd) ∩ C0(Rdx, L1(Rdz)) ∩ C0(Rdz , L1(Rdx)).

Therefore, the inverse Fourier Transform in x of the Wigner Transform Wε is well-defined and is given by

(F−1
x Wε)(ζ, ξ) =

(
2π

ε

)d
ûε

(
ξ

ε
− ζ

2

)
ûε

(
ξ

ε
+
ζ

2

)
,

where ûε = Fuε ∈ L2(Rd) is the Fourier Transform of uε.

Thus the Wigner Transform Wε of uε verifies

Wε ∈ L2(Rd × Rd) ∩ C0(Rdx,FL1(Rdξ)) ∩ C0(Rdξ ,FL1(Rdx)).

Formally, for uε ∈ L2(Rd) and Wε its Wigner Transform, one may have∫
Rd
Wε(x, ξ) dξ =

∫
Rd
Fzρ̃ε(x, ξ) dξ = F−1

ξ (Fzρ̃ε(x, ξ)) (0) = ρ̃ε(x, 0) = |uε(x)|2, (2.14)

and in the same way, for example, if uε ∈ H2,∫
Rd
|ξ|2Wε(x, ξ) dξ =

ε2

4

(
2 |∇uε(x)|2 −∆uε(x)uε(x)− uε(x) ∆uε(x)

)
, (2.15)

and thus ∫∫
Rd×Rd

|ξ|2Wε(x, ξ) dξdx = ε2

∫
Rd
|∇uε(x)|2 dx, (2.16)

which may also be true if uε ∈ H1. However, we don’t have any result of integrability in ξ for Wε in

general. A convolution with some good kernel may fix this problem, in order to get such properties. The

first idea is to get a Gaussian kernel. In order to get the same convergence when ε→ 0 as Wε, we would

like such kernels to be mollifiers and approximate identity when ε→ 0. For this purpose, we define the

Gaussian with ε variance by

γε(x) =
1

(πε)
d
2

exp

(
−|x|

2

ε

)
,

Gε(x, ξ) = γε(x) γε(ξ).

This leads to the definition of the Husimi Transform.

Definition 2.2. The Husimi Transform of a sequence of functions uε ∈ L2(Rd) for ε > 0 is defined by

WH
ε = Wε ∗Gε = Wε ∗x γε ∗ξ γε.
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This tool fixes the problem of integrability, but it also takes into account the question of non-negativity

previously asked.

Lemma 2.4. For every uε ∈ L2(Rd), ε > 0, its Husimi Transform WH
ε is non-negative and has the

following properties of integration and regularity:

WH
ε ∈W∞,1(Rd × Rd) ∩ C∞(Rdx,W∞,1(Rdξ)) ∩ C∞(Rdξ ,W∞,1(Rdx)).

Thanks to the non-negativity of the Husimi Transform and its high regularity, we can then face the

problem of the formal estimates (2.14)-(2.16) in terms of the Husimi Transform.

Lemma 2.5. For every uε ∈ L2(Rd), ε > 0, and its Husimi Transform WH
ε , there holds:

FξWH
ε (x, z) =

1

(2π)d
(ρ̃ε(.,−z) ∗ γε)(x) exp

(
−ε |z|

2

4

)
.

This equality is very useful to actually compute some integrals in ξ involving the Husimi Transform.

Proposition 2.2. Take uε ∈ L2(Rd), ε > 0 and denote its Husimi Transform WH
ε . For every x ∈ Rd,

there holds:

1. ∫
Rd
WH
ε (x, ξ) dξ = |uε|2 ∗ γε(x), (2.17)

and ∫∫
Rd×Rd

WH
ε (x, ξ) dξdx = ||uε||2L2 . (2.18)

2. if uε ∈ H1(Rd),∫
Rd
|ξ|2WH

ε (x, ξ) dξ = ε2 |∇uε|2 ∗ γε(x)− ε2

4
|uε|2 ∗∆γε(x) +

εd

2
|uε|2 ∗ γε(x), (2.19)

and ∫∫
Rd×Rd

|ξ|2WH
ε (x, ξ) dξdx = ε2||∇uε||2L2 +

εd

2
||uε||2L2 . (2.20)

In a more general way,∫
Rd
ξiξjW

H
ε (x, ξ) dξ = ε2 Re

(
∂iuε ∂juε

)
∗ γε(x)− ε2

4
|uε|2 ∗ ∂i∂jγε(x) +

εδij
2
|uε|2 ∗ γε(x),

and ∫∫
Rd×Rd

ξiξjW
H
ε (x, ξ) dξdx = ε2

∫
Rd

Re
(
∂iuε ∂juε

)
dx+

εδij
2
||uε||2L2 .

3. if uε ∈ H1(Rd), ∫
Rd
ξ WH

ε (x, ξ) dξ = ε Im(∇uε uε) ∗ γε (x) , (2.21)

and therefore ∫∫
Rd×Rd

ξ WH
ε (x, ξ) dξdx =

∫
Rd
ε Im(∇uε uε) dx. (2.22)

4. if uε ∈ F(H1), ∫∫
Rd×Rd

|x|2WH
ε (x, ξ) dxdξ = ||xuε||2L2 +

εd

2
||uε||2L2 . (2.23)
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The first part of this proposition can be found in [12], whereas the other parts (which are based on the

same idea with some extra calculus) will be done in Appendix A.

Thanks to those estimations, we see that if (uε)ε is bounded in L2(Rd), then (WH
ε )ε is a sequence of

non-negative functions bounded in L1(Rd). On the other hand, bounds on (Wε)ε are less obvious. A way

to get some consists in defining this space of test functions.

A =
{
φ ∈ C0(Rdx × Rdξ), (Fξφ)(x, z) ∈ L1(Rdz , C0(Rdx))

}
endowed with the norm

||φ||A = ||Fξφ||L1
zL
∞
x

which makes it a Banach space and algebra.

Proposition 2.3. If (uε)ε is bounded in L2(Rd) then Wε is bounded in A′.

Then, if (uε)ε is bounded in L2(Rd), up to extracting a subsequence, we can suppose that Wε ⇀W

in A′ (endowed with the weak-∗ topology) but also WH
ε ⇀WH inM(Rd ×Rd) thanks to the L1 bound

on WH
ε and the fact that those functions are non-negative.

Then, we would like such limits to have some similar properties as we calculated before, for example

(2.17) and (2.18). In some way, we do not want to have loss of mass at infinity or due to oscillatory

behaviour. This motivates the following definitions.

Definition 2.3. A sequence (uε)ε in L2(Rd) is said to be:

• ε-oscillatory if sup
ε

∫
|ξ|≥R

ε
|ûε(ξ)|2 dξ −→

R→+∞
0.

• compact at infinity if sup
ε

∫
|x|≥R |uε(x)|2 dx −→

R→+∞
0.

Remark 2.4. Note that the condition

∃s > 0 such that εsDsuε is uniformly bounded in L2
loc

(where Dsf = F−1(|ξ|sFf)) is sufficient for being ε-oscillatory.

In the same way, the condition

∃g ∈
{
f : R+ → R+, f(t) −→

t→+∞
+∞

}
such that g(|x|)uε is uniformly bounded in L2(Rd)

is sufficient for being compact at infinity.

We can now state the main theorem that we will use. This theorem relates some formal properties on

Wε (like (2.17)), the Husimi transform (which should converge as ε→ 0 to the same limit as Wε in view

of its definition) and the final limit.

Theorem 2.2 ([12, Theorem III.1.]). 1. W = WH ∈M(Rd × Rd).

2. If |uε(x)|2 (resp.
∣∣∣ûε ( ξε)∣∣∣2 (2πε)d) weakly converges in measure to a non-negative measure µx

(resp. µξ), then µx(x) ≥
∫
RdW (x, dξ) (resp. µξ(ξ) ≥

∫
RdW (dx, ξ)).

For µx, the inequality is an equality iff (uε) is ε-oscillatory.
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3. We have the equality ∫∫
Rd×Rd

W (dx, dξ) = lim
ε→0

∫
|uε(x)|2 dx

if and only if (uε) is ε-oscillatory and compact at infinity.

Thanks to the first part of this theorem, we see that W is actually a (non-negative) measure, following

the intuition we had previously. We call W a Wigner Measure.

Remark 2.5. There is in general no reason for W to be unique. This is why we call W a Wigner Measure

and not the Wigner Measure. However, in some case, it can be proven that it is unique and in such cases

we can call it the Wigner Measure of the sequence.

Remark 2.6. ε is only the parameter defining the sequence (uε), so its appearance in the definition of

the Wigner Transform (and then in the Husimi Transform) is purely arbitrary. Actually, in order to have

good results, which means non-trivial measure, ε should actually be of the same order as the characteristic

oscillatory length, as the fact of being ε-oscillatory predicts it.

Example 2.1 (WKB State). If uε = f(x) ei
φin(x)

ε where f ∈ L2(Rd) and φin ∈W 1,1
loc (Rd), then:

• ρ̃ε converges to |f(x)|2 ei∇φin(x)·z in S ′(Rd × Rd).

• the Wigner transform converges to W = |f(x)|2dx⊗ δξ=∇φin(x).

Remark 2.7. This example motivates us in the sense that our intuition (and the properties that we got)

leads us to think that the solution to (1.3) may be described very formally as uε(t, x) = aε(t, x) ei
φε(t,x)

ε ,

and some convergence for aε and φε for ε→ 0 would yield a mono-kinetic Wigner measure.

In order to be able to apply a semi-classical limit, we should now introduce some dependence in time.

For this purpose, we take uε = uε(t, x) ∈ Cb([0, T ), L2(Rd)) a sequence of function depending on time,

and we define its Wigner transform Wε(t) by the Wigner transform of uε(t) for every t.

Proposition 2.4. Take uε = uε(t, x) ∈ Cb([0, T ), L2(Rd)) (T ∈ (0,∞]) such that there exists a real-

valued potential Vε ∈ L∞([0, T ),F(Lp)(Rd)) for some p ∈ [1,∞) such that

iε∂tuε +
ε2

2
∆uε = Vεuε in D′.

Then Wε verifies

∂tWε + ξ · ∇xWε +Kε ∗ξ Wε = 0,

where

Kε(t, x, ξ) =
i

(2π)d

∫
Rd
e−iξ·y

Vε
(
t, x+ εy

2

)
− Vε

(
t, x− εy

2

)
ε

dy.

Remark 2.8. The hypothesis Vε ∈ L∞([0, T ),F(Lp(Rd))) is not the sharpest one, and it can be weak-

ened (see for instance [12, Proposition II.1.]). The only issue that we have to face regarding this

result is to have Kε well-defined in some sense (for example, in L∞([0, T ), C(Rdx, Lp(Rdξ))), or in

L∞([0, T ), C(Rdx, H−p(Rdξ))) in [12]), with also the convolution Kε ∗ξ Wε which needs to be well-

defined (for instance in S ′).

Remark 2.9. Note that Vε may depend on uε itself without having any problem.
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Formally, we see that Kε should converge (in some sense) to

K0 = i∇V0(x) · F(y) = −∇V0(x) · ∇δ0(ξ).

Many results are going in this direction, for example:

Proposition 2.5. If (uε = uε(t, x))ε>0 is a sequence bounded in C([0, T ), L2(Rd)) (T ∈ (0,∞]) uni-

formly in ε and V0 ∈ C([0, T ), L2(Rd) ∩ C1(Rd)) is a real-valued potential satisfying (1.8):

iε∂tuε +
ε2

2
∆uε = V0uε in D′,

then, up to a subsequence, the Wigner Transform Wε of (uε)ε converges uniformly on every compact of

[0, T ) in A′w−∗ to W ∈ Cb([0, T ),Mw−∗) which verifies

∂tW + ξ · ∇xW +∇xV0 · ∇ξW = 0.

Remark 2.10. Again, the hypothesis on V0 can be weakened (see for instance [12, Théorème IV.1. and Re-

marque IV.2.]).

We see that the previous result is made in the linear case, but it also works on some non-linear case:

Proposition 2.6. Take V0 ∈ C1(Rd) such that V0 ≥ C > −∞, ∇V0 ∈ Cb(Rd). If (uε = uε(t, x))ε is a

sequence uniformly bounded in ε in C([0, T ), L2(Rd)) which verifies

iε∂tuε +
ε2

2
∆uε = Vεuε in D′,

Vε = V0 ∗ |uε|2,

then, up to a subsequence, the Wigner Transform Wε of (uε)ε converges uniformly on every compact of

[0, T ) in A′w−∗ to W ∈ Cb([0, T ),Mw−∗) which verifies

∂tW + ξ · ∇xW +∇xV · ∇ξW = 0, (2.24)

V = V0 ∗ ρ, ρ(t, x) =

∫
Rd
f(t, x, dξ). (2.25)

Remark 2.11. Such result works with some other hypothesis on V0, for example [12, Théorème IV.2.].

Remark 2.12. We gave some results about the weak convergence of the Wigner Transform. Under some

stronger hypothesis on the potential of the Schrödinger equation for the linear case, A. Athanassoulis and

T. Paul have shown some strong convergence results ([3]). However, there are also some cases where we

know that there is no convergence

Those results are rather positive for our point of view. They show that we could have a link between

Logarithmic Schrödinger Equation and Logarithmic Vlasov Equation thanks to the Wigner Transform

and its limit when ε → 0. However, this link is still formal, and the proof to make it rigorous must be

difficult because of the very little regularity of our potential ln |uε|2, which depends on the solution uε
(more exactly on |uε|2) and may have no meaning in L1.
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2.2.2 Wigner Measure of a Non-Linear Schrödinger Equation with logarithmic
non-linearity

We are now interested in the limit of the Wigner Transform of (uε)ε>0, where uε is the solution in

L∞(R+,F(H1) ∩H1) ∩ C(R+, L2 ∩H1
w) of (1.3) with uε,in =

√
ρin(x) ei

φin(x)

ε :

i ε ∂tuε +
ε2

2
∆uε = λuε ln |uε|2, uε(0, x) = uε,in =

√
ρin(x) ei

φin(x)

ε ,

where λ > 0, and ρin ≥ 0 and φin are given functions satisfying (1.11):

√
ρin ∈ F(H1) ∩H1(Rd) \ {0} , φin ∈W 1,1

loc (Rd),
√
ρin∇φin ∈ L2(Rd),

so that uε,in ∈ F(H1) ∩H1 for all ε > 0. Recall the definition of vε made in (1.12)

uε(t, x) =
1

τ(t)
d
2

||√ρin||L2

||γ||L2

vε

(
t,

x

τ(t)

)
e
i
τ̇(t)
τ(t)

|x|2
2 ε ,

In this section, we denote by Wε (resp. W̃ε) the Wigner Transform of uε (resp. vε). Foremost, we see

that (1.18) and (1.19) are a straightforward consequence of Example 2.1.

Link between the two Wigner Transforms

We first prove the relation (1.20) between the two Wigner Transform.

Wε(t, x, ξ) =
1

(2π)d

∫
ei y·ξuε

(
t, x+

ε

2
y
)
uε

(
t, x− ε

2
y
)
dy

=
||ρin||L1

||γ2||L1

1

(2π τ(t))d

∫
ei y·ξvε

(
t,
x+ ε

2 y

τ(t)

)
vε

(
t,
x− ε

2 y

τ(t)

)
e
−i τ̇(t)

τ(t)

|x− ε2 y|
2−|x+ ε2 y|

2

2ε dy

=
||ρin||L1

||γ2||L1

1

(2π τ(t))d

∫
e
i y·ξ−i τ̇(t)

τ(t)
x·y
vε

(
t,
x+ ε

2 y

τ(t)

)
vε

(
t,
x− ε

2 y

τ(t)

)
dy

=
||ρin||L1

||γ2||L1

1

(2π)d

∫
e
i τ(t) z·ξ−i τ̇(t)

τ(t)
x·y
vε

(
t,

x

τ(t)
+
ε

2
z

)
vε

(
t,

x

τ(t)
− ε

2
z

)
dz

=
||ρin||L1

||γ2||L1

W̃ε

(
t,

x

τ(t)
, τ(t) ξ − τ̇(t)x

)
.

This link between Wε and W̃ε is independent of ε, therefore we must have the same link when passing to

the limit ε→ 0.

Passing the Wigner Transforms to the limit

Following the ideas of [12, Theorem IV.1.] and [10, Proposition 3.5.], we would like to have for W̃ε

(up to extracting a subsequence) a uniform convergence on every compact of [0,∞) in A′w−∗ to a limit

W̃ ∈ Cb([0,∞),M) thanks to Ascoli’s theorem. But we cannot prove the equicontinuity of 〈a,Wε〉 for

every a ∈ A in the same way due to the very little regularity of the "potential" Vε = ln |uε|2. However,

we still have uniform (both in time and ε) bounds of W̃ε(t) in A′ and of W̃H
ε (t) in L1(Rd × Rd). Such a

property will allow us to have some weak convergence up to a subsequence, as stated in the next lemma:
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Lemma 2.6. Under the assumptions of Theorem 1.5, there exists two (non-negative) finite measures W

and W̃ in L∞((0,∞),M(Rd × Rd)) such that, up to a subsequence, for every p ∈ (1,∞)

Wε ⇀
n→∞

W in Lploc((0,∞),A′),

W̃ε ⇀
n→∞

W̃ in Lploc((0,∞),A′),

WH
ε ⇀

n→∞
W in Lploc((0,∞),M(Rd)),

W̃H
ε ⇀

n→∞
W̃ in Lploc((0,∞),M(Rd)),

Proof. We will focus on W̃ε since the same argument will work for Wε.

As previously said, W̃ε and W̃H
ε are bounded respectively inL∞((0,∞),A′) and inL∞((0,∞), L1(Rd×

Rd)). Therefore, for every T > 0, we can extract a subsequence εTk such that W̃εTk
(resp. W̃H

εTk
) weakly

converges in Lp(0, T ;A′w−∗) (resp. Lp(0, T ;M)) for any p ∈ [1,∞) to a limit W̃ T ∈ L∞(0, T ;A′)
(resp. W̃ T

H ∈ L∞(0, T ;M)).

Following the idea of Theorem 2.2, we should be able to prove that W̃ T = W̃ T
H ∈ L∞(0, T ;M(Rd×

Rd)). As we have

W̃H
ε = W̃ε ∗Gε, where Gε =

1

(πε)d
e−
|x|2+|ξ|2

ε ,

it is enough to prove that, for example, for any φ ∈ L2(0, T ;A) (or in a dense subspace of this space),

φ ∗Gε converges in L2(0, T ;A) to φ. Knowing that

Fξ(φ ∗Gε)(t, x, z) =

[
Fξφ(t, x, z) ∗x

1

(πε)
d
2

e−
|x|2
ε

]
e−ε

|z|2
4 ,

we see that for a.e. t ∈ (0, T ),

||φ(t) ∗Gε − φ(t)||A ≤
∫
Rd

sup
x

∣∣∣∣∣Fξφ(t)−Fξφ(t) ∗x
1

(πε)
d
2

e−
|x|2
ε

∣∣∣∣∣ dz
+

∫
Rd

(1− e−ε
|z|2
4 ) sup

x
|Fξφ(t)| dz.

Again for a.e. t ∈ (0, T ), the second term goes to 0 when ε goes to 0, and so does the first term if

φ(t) ∈ S(Rd × Rd) and so Fξφ(t) ∈ S(Rd × Rd). Moreover,

||Fξ(φ ∗Gε)(t)||L1
zL
∞
x

=

∣∣∣∣∣
∣∣∣∣∣
[
Fξφ(t) ∗x

1

(πε)
d
2

e−
|x|2
ε

]
e−ε

|z|2
4

∣∣∣∣∣
∣∣∣∣∣
L1
zL
∞
x

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Fξφ(t) ∗x

1

(πε)
d
2

e−
|x|2
ε

∣∣∣∣∣
∣∣∣∣∣
L∞x

e−ε
|z|2
4

∣∣∣∣∣∣
∣∣∣∣∣∣
L1
z

≤ ||Fξφ(t)||L1
zL
∞
x

= ||φ(t)||A,

which yields

||φ(t) ∗Gε − φ(t)||A ≤ ||φ(t) ∗Gε||A + ||φ(t)||A ≤ 2||φ(t)||A.

Then, for φ ∈ C∞c ((0, T )× Rd × Rd) for example, dominated convergence theorem shows that∫ T

0
||φ(t) ∗Gε − φ(t)||2Adt −→

ε→0
0
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which is what we wanted. Therefore, W̃ T = W̃ T
H . Using a diagonal extraction, we then have a

limit W̃ ∈ L∞((0,∞),A′ ∩ M(Rd × Rd)) such that (up to a subsequence) W̃ε converges to W̃ in

Lploc((0,∞),A′w−∗).

Remark 2.13. The previous proof is actually a simple re-writing of the proof of the first part of Theorem

2.2 which is found in [12], with in addition the time-dependence.

Now that we have a limit, the relation (1.20) passes to the limit:

W (t, x, ξ) =
||ρin||L1

||γ2||L1

W̃

(
t,

x

τ(t)
, τ(t) ξ − τ̇(t)x

)
.

Lemma 2.7. With the same notation as the previous Lemma and for the same subsequence in ε as for the

convergence of W̃ε, there holds

|vε|2 ⇀
ε→0

∫
Rd
W̃ (t, y, dη) = ρ̃ in Lploc((0,∞), L1(Rd)) (2.26)

for every p ∈ [1,∞), and

ρ̃ ∈ L∞((0,∞), L1
2 ∩ L logL) ∩ C([0,∞),W−1,1 ∩ L1

w). (2.27)

Proof. The previous property (1.13) shows that (vε) is ε-oscillatory uniformly on every compact [0, T ] in

time, but also compact at infinity uniformly in time. Moreover, along with the de la Vallée-Poussin and

Dunford-Pettis theorems, those properties also yield that for every T > 0, up to a further subsequence

(depending on T ), ρε = |vε|2 converges to a limit ρ̃T ∈ L∞((0, T ), L1
2 ∩ L logL) for the weak topology

σ
(
L1((0, T )× Rdx), L∞((0, T )× Rdx)

)
. Then

|vε|2 ⇀
ε→0

ρ̃T in Lp([0, T ], L1
y)

for every p ∈ [1,∞). Using again a diagonal extraction, we obtain a limit ρ̃ ∈ L∞((0,∞), L1
2 ∩ L logL)

such that |vε|2 ⇀
ε→0

ρ̃ in Lploc([0,∞), L1
y) for every p ∈ [1,∞).

Then, in the same way as before, the second part of Theorem 2.2 can be generalized by adding

time-dependence. Therefore, we have the following properties for a.e. t, y:∫
Rd
W̃ (t, y, dη) = ρ̃(t, y),∫∫

Rd×Rd
W̃ (t, dy, dη) = lim

ε→0

∫
Rd
|vε(t, y)|2 dx = ||γ||2L2 .

The first equation shows that ρ̃ is totally determined by W̃ , so there’s no need of further extraction to

make |vε|2 weakly convergent: as soon as (W̃εk)k weakly converges to W̃ , |vεk |2 weakly converges to ρ̃.

It remains to prove that ρ̃ ∈ C([0,∞),W−1,1 ∩ L1
w). Come back to the equation for ∂tρε in (2.2)

where ρε = |vε|2:

∂tρε +
1

τ2(t)
∇ · Jε = 0 in D′,

where we recall Jε = Im(ε vε∇vε). We also recall that 1
τ(t)Jε is bounded in L∞((0,∞), L1(Rd))

uniformly in ε > 0. Therefore, ρε is bounded in W 1,∞((0,∞),W−1,1(Rd)) uniformly in ε > 0. Such a

bound leads to the estimation

||ρε(t0 + .)− ρε||L∞t W−1,1
y
≤ C|t0| for all t0 ≥ 0.

30



This estimate passes to the weak limit, and therefore we get

||ρ̃(t0 + .)− ρ̃||
L∞t W

−1,1
y
≤ C|t0| for all t0 ≥ 0.

Such an estimate leads to ρ̃ ∈ C(R+,W−1,1(Rd)), and along with (1.13), we infer that ρ̃ ∈ C(R+, L1
w(Rd)).

Remark 2.14. This proves (1.21) and (1.22). The same kind of properties as (2.26) and (2.27) hold for W .

Second momentum of the Wigner Measure

We now use the bounds uniform in ε found in (1.13) and (1.14) to obtain some momentum for the Wigner

measure, using also Property 2.2. For example, for the second momentum in ξ, we have:∫∫
Rd×Rd

|η|2 W̃H
ε (t, y, η) dydη ≤ ε2 ||∇vε(t)||2L2 +

εd

2
||vε||2L2 .

We know that W̃H
ε weakly converges to W̃ in Lploc([0,∞),M) for every p ∈ [1,∞), therefore we get∫∫

Rd×Rd
|η|2 W̃ (t, dy, dη) ≤ C τ2(t) for a.e. t,∫ ∞

0

τ̇(t)

τ(t)3

∫∫
Rd×Rd

|η|2 W̃ (t, dy, dη) dt ≤ C.

In the same way, we also have some bounds for the second moment in y of W̃ uniformly in ε and t by

using equality (2.23): ∫∫
Rd×Rd

|y|2 W̃ (t, dy, dη) ≤ C for a.e. t.

Convergence of some quantities

Proposition 2.7. Under the assumptions of Theorem 1.5, there holds

∫
Rd

(
1

y

)
ρ̃(t, y) dy −→

t→∞

∫
Rd

(
1

y

)
γ2(y) dy.

Proof. The first convergence is obvious, as it is constant. For the second convergence, using Lemma 2.2

and its notations, we get

Iε2(t) =
1

τ(t)
(C1t+ C2).

Moreover, thanks to the bounds (1.13) and in particular the fact that |y| vε is bounded in L2 uniformly in t

and ε, we also know that Iε2(t) −→
ε→0

∫
Rd y ρ(t, y) dy =: I2(t). Therefore,

I2(t) =
1

τ(t)
(−I1(0) + t I2(0)) −→

t→∞
0 =

∫
Rd
y γ2(y) dy.
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Equation on ρ̃

Recall the definition of ρε and Jε

ρε = |vε|2,

Jε = Im(ε vε∇vε),

with ρε weakly converging to ρ̃ and Jε bounded in L1 locally uniformly in time, uniformly in ε, thanks to

the properties (1.13). Then we also recall the three equations found in (2.2)-(2.4),

∂tρε +
1

τ2(t)
∇ · Jε = 0,

∂tJε + λ∇ρε + 2λ y ρε =
ε2

4 τ2(t)
∆∇ρ− ε2

τ2(t)
∇ · (Re(∇vε ⊗∇vε)) in D′,

∂t(τ
2 ∂tρε) = λ (∆ρ̃ε + 2∇ · (y ρ̃ε))−

ε2

4 τ2(t)
∆2ρε +

ε2

τ2(t)
∇ ·
(
∇ · (Re(∇vε ⊗∇vε))

)
.

In the last equation, the weak convergence of ρε yields the weak convergence of the left-hand side and of

the first term of the right-hand side. Moreover, the third term of the right-hand side goes to zero in W−4,1.

Then, thanks to (1.13), the boundedness of |y|2ρε in L1 norm leads to the weak convergence of y ρε to

y ρ̃. It only remains the convergence of the last term of the right-hand side. The only bounds we have on

this term are due to the same property (1.13) and the following one (1.14):∣∣∣∣∣∣∣∣ ε2

τ2(t)
Re(∇vε(t)⊗∇vε(t))

∣∣∣∣∣∣∣∣
L1

≤ ε2

τ2(t)
||∇vε(t)||2L2 ≤ C for every t ≥ 0 and ε > 0,∫ ∞

0

τ̇(t)

τ(t)

∫
Rd

∣∣∣∣ ε2

τ2(t)
Re(∇vε(t)⊗∇vε(t))

∣∣∣∣ dy dt ≤ C.
Therefore, up to a subsequence, ε2

τ2(t)
Re(∇vε(t) ⊗ ∇vε(t)) weakly converges as a measure in every

[0, T ] × Rd (T > 0) to a ν ∈ L∞((0,∞),Md(Ms(Rd))) (whereMs designed signed measure) which

verifies ∫ ∞
0

τ̇(t)

τ(t)
|ν|(t,Rd) dt ≤ C <∞. (2.28)

Therefore, we obtain ε2

τ2(t)
∇ ·

(
∇ · (Re(∇vε ⊗∇vε))

)
⇀
ε→0

∇ · (∇ · ν) in the sense that for every

φ ∈ Cc((0,∞); C2
0(Rd)),

〈 ε2

τ2(t)
∇ ·
(
∇ · (Re(∇vε ⊗∇vε))

)
, φ
〉
t,y

=
〈 ε2

τ2(t)
(Re(∇vε ⊗∇vε)),∇⊗∇φ

〉
t,y

where the last matrix scalar product must be interpreted term by term: 〈A,B〉 =
∑
i,j
aijbij , and so

〈 ε2

τ2(t)
∇ ·
(
∇ · (Re(∇vε ⊗∇vε))

)
, φ
〉
t,y
−→
ε→0
〈ν,∇⊗∇φ〉t,y = 〈∇ · ∇ · ν, φ〉t,y.

Thus

∂t(τ
2 ∂tρ̃) = λLρ̃+∇ · (∇ · ν) , (2.29)

where we recall L = ∆ +∇ · (2y .) is the same Fokker-Plank operator as previously.
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In order to reproduce the same proof as previously, we want a similar equation as (2.2). The first term

still converges, and the fact that Jε has some good bounds is helpful. Recalling such bounds,

1

τ(t)
||Jε(t)||L1 ≤ C,∫

Rd

1

τ(t)
|Jε(t, y)| |y| dy ≤ C,∫ ∞

0

τ̇(t)

τ(t)

(
1

τ(t)
||Jε(t)||L1

)2

dt ≤ C,

the first two inequalities imply that 1
τ(t)Jε is a tight sequence uniformly in ε and time. Therefore, up to

a further subsequence (in ε), 1
τ(t)Jε narrowly converges in measure in [0, T ]× Rd for every T > 0 to a

limit µ ∈ L∞([0,∞),Ms(Rd)d) with also for every t ≥ 0∫
Rd
|y| d|µ|(t) ≤ C, (2.30)∫ ∞

0

τ̇(t)

τ(t)
|µ|(t,Rd)2 dt ≤ C, (2.31)

and the weak limit of equation (2.2)

∂tρ̃+
1

τ(t)
∇ · µ = 0. (2.32)

ACTUALLY, µ IS CONTINUOUS IN TIME THANKS TO (2.4) IN S VARIABLE AND (2.30),

AND WE WILL NEED IT !!!!!!!!!!!!

End of the proof

Using the 5 equations and estimates (2.28)-(2.32), the proof is then similar to the previous proof presented

in Section 2.1.2. Indeed, the same considerations hold, except that we need to take bounded continuous

functions instead of L∞ (or Cnb when we talked about Wn,∞ for n ∈ N) because ε2

τ2(t)
Re(∇vε ⊗∇vε)

and 1
τ(t)Jε, both L∞((0,∞), L1(Rd)), are replaced respectively by ν ∈ L∞((0,∞),Md(Ms(Rd))) and

µ ∈ L∞((0,∞),Ms(Rd)d), and thus 〈µ(t), φ〉y (for example) has a meaning for a.e. t > 0 if φ ∈ Cb(Rd)
instead of L∞(Rd). However, the estimations are totally similar and the proof holds once we have made

this little modification.

For example, using the two same notations as in the previous proof, we have∇ · (∇ · ν̌n) ⇀ 0 in the

sense that for every ψ ∈ C2
b ([−1,∞)× Rd)

〈∇ · (∇ · ν̌n) , ψ〉 =

∫∫
[−1,∞)×Rd

D2ψ dν̌n

|〈∇ · (∇ · ν̌n) , ψ〉| ≤ ||D2φ||C0
∫∫

[−1,∞)×Rd
d|ν̌n|

≤ ||D2φ||C0
∫∫

[sφ(n)−1,∞)×Rd
d|ν̌| −→

n→∞
0,

thanks to (2.28) transformed in a property in s.

Remark 2.15. We insist on the fact that we can consider ρ̃(t) for all t ≥ 0 (and not only a.e.) thanks to

the property ρ̃ ∈ C(R+, L1
w). We also remark that the condition (2.10) still holds thanks to this property,

which makes the proof hold in the same way.
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Remark 2.16. In some way, this theorem shows that the weak convergence of ρε = |vε|2 to γ2 is uniform

in ε ∈ (0, 1], since we have the same convergence for ε = 0. This uniformity might be quantified, for

example in some Wasserstein distance, but we will not do it in this survey. It will probably be the subject

of a further work.

Remark 2.17. Thanks to the equality (2.21), we see that the limit µ of 1
τ(t) J̃ε is actually

µ =
1

τ(t)

∫
Rd
η W̃ (t, y, dη).

The same consideration would have worked for ν with "ν = 1
τ2(t)

∫
Rd η ⊗ η W̃ (t, y, dη)" if we had a

bound for a higher momentum in η for example.

2.3 Vlasov Equation with Logarithmic Non-Linearity

We recall the Vlasov Equation with Logarithmic Non-Linearity (1.1):

∂tf + ξ · ∇xf − λ∇x (ln ρ) · ∇ξf = 0,

where λ > 0 and

ρ(t, x) =

∫
f(t, x, dξ).

A solution f = f(t, x, ξ) of such a Vlasov equation is a non-negative measure in x and ξ for every t.

We explain first, in a very formal way, how we end up with the assumptions (1.30)-(1.35). Recall the

first two assumptions (1.30) and (1.31):

d
dt

(∫∫
Rd×Rd

f(t, dx, dξ)

)
= 0,

d
dt

(
1

2

∫∫
Rd×Rd

|ξ|2 f(t, dx, dξ) + λ

∫
Rd
ρ(t, x) ln ρ(t, x)dx

)
= 0.

The first equality comes from the fact that this type of Vlasov equation is a transport equation with

null-divergence transport. The second equality is a well-known property of energy, since the potential

in this case is ln ρ. Therefore, if we want such properties, we will need all the terms to be well-defined,

especially in (1.31), for every t, and thus also for the initial data, even in the case where f = f(t, x, ξ) is

only a measure in x and ξ for every t. The term ρ ln ρ is the most interesting, as it cannot be generalized

to the case where ρ is a measure. Therefore, we need ρ(t, x) to be defined x-a.e. for every t, and then

ρ(t) ∈ L1(Rd) with (1.30). Moreover, in the same way as previously, we also have some other (formal)

properties, for example for ρ:

∂tρ(t, x) +∇x ·
(∫

Rd
ξ f(t, x, dξ)

)
= 0,

or also for
∫
Rd ξ f(t, x, dξ):

∂t

∫
Rd
ξ f(t, x, dξ) +∇x ·

∫
Rd
ξ ⊗ ξ f(t, x, dξ) + λ∇xρ(t, x) = 0,
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These two equations yield for example

d
dt

(∫∫
Rd×Rd

|x|2 f(t, dx, dξ)

)
= 2

∫∫
Rd×Rd

x · ξ f(t, dx, dξ),

d
dt

(∫∫
Rd×Rd

x · ξ f(t, dx, dξ)

)
=

∫∫
Rd×Rd

|ξ|2 f(t, dx, dξ) + λ

∫
Rd
ρ(t, x)dx,

and thus we also want those terms to be well-defined. Such remarks lead us to define:

MΣlog =

{
µ ∈M(Rdx × Rdξ), ρ(x) =

∫
Rdξ
µ(x, dξ) ∈ L1(Rd) ∩ L | logL |(Rd)

}
,

M2 =

{
µ ∈M(Rdx × Rdξ),

∫∫
Rd×Rd

(|x|2 + |ξ|2) dµ <∞
}
.

Remark 2.18. ∇x(ln ρ(t)) is actually weakly defined ρ(t)-a.e.: indeed, for every φ ∈W 1,∞(Rd),∫
∇x(ln ρ)(t, .)φdρ(t) = −

∫
ρ(t, x)∇φ(x) dx = −

∫
∇φdρ(t).

In the same way, the term ∇x(ln ρ) · ∇ξf is weakly well-defined as soon as ρ(t) ∈ W 1,1 because for

every φ ∈ L∞(Rdx,W 1,∞(Rdξ))

〈∇x(ln ρ)(t, x) · ∇ξf(t, x, ξ), φ(x, ξ)〉(x,ξ) = 〈∇x(ln ρ)(t, x) f(t, x, ξ),∇ξφ(x, ξ)〉(x,ξ)

=
〈
∇x(ln ρ)(t, x),

〈
f(t, x, ξ),∇ξφ(x, ξ)

〉
ξ

〉
x
,

with the last term well-defined because:∫∫
Rd×Rd

|∇x(ln ρ)(t, x) f(t, x, ξ) · ∇ξφ(x, ξ)| dxdξ ≤
∫
Rdx
|∇x(ln ρ)(t, x)|

∫
Rdξ
|f(t, x, ξ)∇ξφ(x, ξ)| dξ dx

≤
∫
Rdx
|∇x(ln ρ)(t, x)|

∫
Rdξ
f(t, x, ξ) ||∇ξφ||L∞ dξ dx

≤
∫
Rdx
|∇x(ln ρ)(t, x)| ρ(t, x) ||∇ξφ||L∞ dx

≤
∫
Rdx
|∇xρ(t, x)| ||∇ξφ||L∞ dx <∞.

Such remarks might help in order to find a real formalization of the equation, but this is not our goal

here.

2.3.1 "Gaussian-Gaussian" Case in dimension 1

The "Gaussian-Gaussian" case is very interesting because the solutions can actually be computed explicitly.

It is also helpful to understand the behaviour of the solution, and to see that the dispersion rate is the same

in this case as the previous one in t
√

ln t.

Proposition 2.8. 1. For c1,0, c2,0 > 0, c1,1, B0, B1 ∈ R, set

C̃ = c1,0 c2,0, (2.33)
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and consider c1 ∈ C∞(R+) solution to
c̈1 =

2λ

c1
+
C̃2

c3
1

,

c1(0) = c1,0,

ċ1(0) = c1,1.

(2.34)

Then set

c2(t) =
C̃

c1(t)
, (2.35)

b1(t) = B1t+B0, (2.36)

b2(t, x) =
ċ1(t)

c1(t)
(x−B1 t−B0) +B1. (2.37)

Therefore

f(t, x, ξ) =
1

π c1(t) c2(t)
exp

[
−|x− b1(t)|2

c1(t)2
− |ξ − b2(t, x)|2

c2(t)2

]
(2.38)

satisfies (1.1).

2. Let T ∈ (0,∞) ∪ {+∞}, b1 = b1(t) ∈ C1([0, T ),R), c1 = c1(t) ∈ C1([0, T ), (0,∞)) ∈,

b2 = b2(t, x) ∈ C1([0, T )× R,R) and c2 = c2(t, x) ∈ C1([0, T )× R, (0,∞)) such that

f(t, x, ξ) =
1

π c1(t) c2(t, x)
exp

[
−|x− b1(t)|2

c1(t)2
− |ξ − b2(t, x)|2

c2(t, x)2

]
(2.39)

is a solution of (1.1). Then c2 = c2(t), all the functions are C2 and (2.33)-(2.37) hold.

The proof of this Proposition actually needs a lot of computations. This will be done in Appendix C.

Remark 2.19. This property may also handle the case when c2,0 = 0, which is actually the monokinetic

case where we have a Dirac in ξ:

fin(x, ξ) =
1√
π c1,0

exp

[
−(x− b1,0)2

c2
1,0

]
⊗ δξ=b2,0(x).

where b2,0(x) is affine. Then the previous proposition shows that f is a Dirac in ξ for all time (if we only

consider Gaussian solutions), as c1(t) c2(t) = c1(0) c2(0) = 0 with c1(t) 6= 0 ∀t. This is similar to [7].

Remark 2.20. The behaviour of c1 has already been studied in [7]:

c1(t) ∼
t→∞

2t
√
λ ln t.

We see that this is the same dispersion rate as in [7] or [5], which is good news. It allows us to get some

convergence, as stated in the following corollary.

Corollary 2.2. With the notations and assumptions of Proposition 2.8, if we rescale to f̃ = f̃(t, y, η) like

previously

f(t, x, ξ) =
||ρin||L1

||γ2||L1

µ̃

(
t,

x

τ(t)
, τ(t) ξ − τ̇(t)x

)
,

and define

ρ̃(t, y) :=

∫
Rd
f(t, y, η) dη,

there holds

ρ̃(t, .) −→
t→∞

γ2 in L1(R).
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2.3.2 General Case

Change of variables

Recall the change of variables (1.36) and write it in terms of f̃ and ρ̃

f(t, x, ξ) =
M

||γ2||L1

f̃

(
t,

x

τ(t)
, τ(t)ξ − τ̇(t)x

)
⇐⇒ f̃(t, y, η) =

||γ2||L1

M
f

(
t, τ(t)y,

η

τ(t)
+ τ̇(t)y

)
,

ρ̃(t, y) =
||γ2||L1

M
ρ(t, τ(t)y) τ(t)d.

Equation on f̃

The Vlasov equation (1.1) can then be expressed in terms of the previous change of variables. Computation

yields:

∂tf̃ − λ [2y +∇y (ln ρ̃)] · ∇ηf̃ +
η

τ(t)2
∇yf̃ = 0.

Energy estimates

We define the relative entropy, the (modified) kinetic energy and the total modified energy by:

Eent(t) :=

∫
Rd
ρ̃(t, y) ln

(
ρ̃(t, y)

γ2

)
dy =

∫
Rd
ρ̃(t, y)

(
ln ρ̃(t, y) + |y|2

)
dy,

Ekin(t) :=
1

2 τ2(t)

∫∫
Rd×Rd

|η|2f̃(t, dy, dη),

E(t) := Ekin(t) + λ Eent(t).

Then we easily compute thanks to assumptions (1.30), (1.31), (1.34) and (1.35):

Ė = −2
τ̇(t)

τ(t)
Ekin.

Therefore, in the same way as previously:

Proposition 2.9. Under the assumptions of Theorem 1.7, there holds:

sup
t≥0

(∫
Rd

(
| ln ρ̃(t, y) |+ |y|2

)
ρ̃(t, y) dy +

1

τ2(t)

∫∫
Rd×Rd

|η|2f̃(t, dy, dη)

)
<∞, (2.40)

and ∫ ∞
0

τ̇(t)

τ3(t)

∫∫
Rd×Rd

|η|2f̃(t, dy, dη) dt <∞. (2.41)

Proof. The proof is totally similar to the proof of Lemma 2.1.

Remark 2.21. Again, as we know that ρ̃ ≥ 0 and ||ρ̃(t)||L1(Rd) = ||γ2||L1(Rd), Csiszár-Kullback inequality

reads (see [1, Theorem 8.2.7]):

Eent(t) ≥
1

2 ||γ2||L1(Rd)

||ρ̃(t)− γ2||2L1(Rd),

hence in particular E ≥ Eent ≥ 0.
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System of equations involving ρ̃

Define

J̃(t, y) :=

∫
η f̃(t, y, dη).

Thanks to assumptions (1.32) and (1.33), we get the system

∂tρ̃+
1

τ2
∇y · J̃ = 0, (2.42)

∂tJ̃ + λ(2y ρ̃+∇yρ̃) = − 1

τ2
∇y
(∫
|η|2 f̃(t, y, dη)

)
. (2.43)


Convergence of some quadratic quantities

Proposition 2.10. Under the assumptions of Theorem 1.7, there holds:

∫
Rd

 1

y

|y|2

 ρ̃(t, y) dy −→
t→∞

∫
Rd

 1

y

|y|2

 γ2(y) dy.

Proof. Again, the proof is similar to Lemma 2.2.

• The first convergence is obvious thanks to the mass conservation.

• The second convergence follows from

İ2(t) =
1

τ2(t)
I1(t), İ1(t) = −2λ I2(t),

where

I1(t) =

∫
Rd
J̃(t, dy), I2(t) =

∫
Rd
y ρ̃(t, y) dy,

thanks to (2.42) and (2.43).

• The third convergence is proven thanks to the energy conservation, translating it into estimates on

f̃ .

Regularity of ρ̃

Come back to equation (2.42):

∂tρ̃+
1

τ2
∇y · J̃ = 0.

The estimate (2.40) yields in the same way as previously that 1
τ J̃ ∈ L

∞((0,∞),Ms(Rd)d). In particular,

the embedding W 2,∞(Rd) ↪→ C1(Rd) shows that 1
τ2
∇y · J̃ ∈ L∞((0,∞),W−2,1(Rd)). Therefore, the

equation (2.42) leads to

ρ̃ ∈W 1,∞((0,∞),W−2,1(Rd)) ⊂ C((0,∞),W−2,1(Rd)).

Using again the estimates (2.40), there holds therefore ρ̃ ∈ C(R+, L1
w(Rd)).

Remark 2.22. The same considerations hold for ρ : ρ ∈ C(R+, L1
w(Rd)).
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End of the proof

Thanks to the estimations (2.40) and (2.41) and the equations (2.42) and (2.43), the proof is actually

completely similar to the proof for the Wigner Measure made in Section 2.2.2.

�

Remark 2.23. We can barely say anything on the behaviour of J̃ except some integration properties (in y

and time). The only other property we might say comes from (2.43). Indeed, as we now have ρ̃n ⇀ γ2 in

Lpt,loc(0,∞;L1(Rd)) and since we also have property (2.40), we know that

2y ρ̃n +∇yρ̃n ⇀
n→∞

0 in L1
t,loc(0,∞;W−1,1(Rd)).

Moreover, (2.41) yields that for every φ ∈ L∞(0,∞;C1
b (Rd))∣∣∣∣∣∣

〈
τ̇n
τ3
n

∇y
(∫

Rd
|η|2 f̃n(t, y, dη)

)
, φ

〉
t,y

∣∣∣∣∣∣ =

∫ ∞
0

τ̇n(t)

τn(t)3

∫
Rd
∇yφ(t, y)

∫
Rd
|η|2 f̃n(t, dy, dη) dt

≤ ||∇yφ||∞
∫ ∞
tn

τ̇(t)

τ(t)3

∫
Rd×Rd

|η|2 f̃(t, dy, dη) dt

−→
n→∞

0.

Therefore, as τ̇(t)
τ(t) ∼t→∞

1
t , (2.43) gives that for every φ ∈ L∞(0,∞;C1

b (Rd))

〈 τ̇n
τn
∂tJ̃n, φ

〉
t,y
−→
n→∞

0.

Proof of Corollary 1.1

In the energy for f , write the potential energy in terms of ρ̃.∫
Rd
ρ(t, x) ln ρ(t, x) dx = −d M

||γ2||L1

ln τ(t)

∫
Rd
ρ(t, y) dy +

M

||γ2||L1

∫
Rd
ρ(t, y) ln ρ(t, y) dy

+
M

||γ2||L1

ln
M

||γ2||L1

∫
Rd
ρ(t, y) dy

= −dM ln τ(t) +O(1),

from (2.40). Therefore, the conservation of the energy for f yields∫∫
Rd×Rd

|ξ|2 f(t, dx, dξ) = 2E0 + 2λdM ln τ(t) +O(1) ∼
t→∞

2λdM ln t.
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Conclusion and perspectives

The universal dynamics for the non-linear Schrödinger equation with logarithmic non-linearity found in

[5] with no quantum semi-classical constant were generalized for the case with semi-classical constant,

and propagate through the semi-classical limit via the Wigner Transform: any Wigner Measure limit of

a subsequence of the Wigner Measure induces a density in space which weakly converges to the same

gaussian than previously up to a rescaling, with the same dispersion rate altered by a logarithmic factor.

Already proven for the case of mono-kinetic solutions, i.e. for solutions of the isothermal Euler equation,

in [4], such dynamics still hold for the "solutions" of the non-linear Vlasov equation with logarithmic

non-linearity, with the same logarithmic potential.

However, the previous result was proven by assuming formal properties of the Logarithmic Vlasov

Equation, and a formalization of this equations still needs to be found. The formal link between Wigner

Measure and the Logarithmic Vlasov Equation also needs to be proven in a more rigorous way.

Yet, we have seen that the Wigner Measure we have found is, in some way, mono-kinetic at t = 0. In

the light of the considerations of [6], we can wonder if it remains mono-kinetic, at least for small time and

for analytic initial data. The second perspective to those results lie in the convergence to γ2 for both the

solution for the Logarithmic Schrödinger Equation and the Wigner Measure. Since the convergence still

holds for both case ε > 0 and ε = 0, we can wonder if such a convergence may be uniform in ε in some

way. As previously said, such an uniformity might be found in the Wasserstein metric, and we need to

deepen our computations to prove such a conjecture.
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Appendix A

Proof of Proposition 2.2

The part 1 of this proposition can be found in [12]. We now prove the points 2 to 4. The part 2 is proven

in Section A.1, Section A.2 is devoted to the proof of part 3, and finally we prove part 4 in Section A.3.

A.1 First part: proof of the second momentum in ξ

The proof of part 2 of Proposition 2.2 is organized in 4 parts. First, we will prove the equality of∫
Rd |ξ|

2WH
ε (x, ξ) dξ for uε ∈ H2 because we need some better regularity to prove the exchange of

integral we will make. Then, we will generalize this result to the case uε ∈ H1 by using an argument of

continuity of such a quadratic form and the fact that the integral is still well-defined even if uε ∈ H1 as

|ξ|2WH
ε (x, ξ) ≥ 0. Then we will be able to consider ξiξjWH

ε (x, ξ) without any issue, and we will prove

the equality involving it in the same way: first for uε ∈ H2, and then generalizing it for uε ∈ H1 thanks

to a continuity argument.

A.1.1 Scalar second momentum: H2 case

As WH
ε is non-negative, we can consider

∫
Rd |ξ|

2WH
ε (x, ξ) dξ without any issue. Moreover, we suppose

here that uε ∈ H2. Then:∫
Rd
|ξ|2WH

ε (x, ξ) dξ =

∫
Rd
|ξ|2 (Wε ∗ξ γε ∗x γε)(x, ξ) dξ

=

(∫
Rd
|ξ|2Wε ∗ξ γε dξ

)
∗x γε(x).

Let’s check that the previous integral exchange is rigorous.(∫
Rd
|ξ|2 |Wε ∗ξ γε| dξ

)
∗y γε(x)

=

(∫
Rd
|ξ|2

∣∣∣∣Fz→ξ (uε (.+ ε

2
z
)
uε

(
.− ε

2
z
))
∗ξ Fz→ξ

(
exp

(
−ε |z|

2

4

))∣∣∣∣ dξ) ∗ γε(x)

=

(∫
Rd

∣∣∣∣|ξ|2Fz→ξ (uε (.+ ε

2
z
)
uε

(
.− ε

2
z
)

exp

(
−ε |z|

2

4

))∣∣∣∣ dξ) ∗ γε(x)

=

(∫
Rd

∣∣∣∣Fz→ξ (∆z

(
uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
)

exp

(
−ε |z|

2

4

)))∣∣∣∣ dξ) ∗ γε(x).
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Then we have

∆z

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

))
=
ε

2
∇z ·

(
∇uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
−uε

(
x+

ε

2
z
)
∇uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
− uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
z exp

(
−ε |z|

2

4

))

=
ε2

4

[
∆uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
+ uε

(
x+

ε

2
z
)

∆uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
+ uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
|z|2 exp

(
−ε |z|

2

4

)
− 2∇uε

(
x+

ε

2
z
)
∇uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
− 2∇uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
· z exp

(
−ε |z|

2

4

)
+2uε

(
x+

ε

2
z
)
∇uε

(
x− ε

2
z
)
· z exp

(
−ε |z|

2

4

)]
− εd

2
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
.

Then, replacing ∆z

(
uε
(
x+ ε

2 z
)
uε
(
x− ε

2 z
)

exp
(
−ε |z|

2

4

))
in the previous calculus by any of the

terms of the previous sum leads to a finite number. For example:

(∫
Rd

∣∣∣∣Fz→ξ (ε2

4
∆uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
)

exp

(
−ε |z|

2

4

))∣∣∣∣ dξ) ∗ γε(x)

=

(∫
Rd

∣∣∣∣Fz→ξ (ε2

4
∆uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
))
∗ξ γε

∣∣∣∣ dη) ∗ γε(x)

≤
(∫

Rd

∣∣∣∣Fz→ξ (ε2

4
∆uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
))∣∣∣∣ ∗ξ γε dη) ∗ γε(x)

≤

(∣∣∣∣∣∣∣∣Fz→ξ (ε2

4
∆uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
))∣∣∣∣∣∣∣∣

L∞ξ

||γε||L1

)
∗ γε(x)

≤ C

(∣∣∣∣∣∣∣∣ε2

4
∆uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
)∣∣∣∣∣∣∣∣

L1
z

||γε||L1

)
∗ γε(x)

≤ C
∣∣∣∣∣∣∣∣ε2

4
∆uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)∣∣∣∣∣∣∣∣

L∞x L
1
z

||γε||L1 ||γε||L1 <∞.

Then, we can come back to our equality.

∫
Rd
|ξ|2WH

ε (x, ξ) dξ =

(∫
Rd
|ξ|2Wε ∗ξ γε dξ

)
∗x γε(x)

= −
(∫

Rd
Fz→ξ

(
∆z

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)))
dξ

)
∗x γε(x)

= −
[

∆z

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

))]∣∣∣∣
z=0

∗x γε(x)
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Using the previous calculus of ∆z

(
uε
(
x− ε

2 z
)
uε
(
x+ ε

2 z
)

exp
(
−ε |z|

2

4

))
, we obtain

∆z

(
vε

(
x+

ε

2
z
)
vε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

))∣∣∣∣
z=0

=
ε2

4

[
∆uε (x) uε (x) + uε (x) ∆uε (x)

− 2|∇uε (x) |2
]
− εd

2
|uε(x)|2

=
ε2

4

[
∆
(
|uε|2

)
(x)− 4 |∇uε (x) |2

]
− εd

2
|uε(x)|2.

Therefore, knowing that γε ∈ S(Rd), we can pass the ∆ to the other side of the convolution and get∫
Rd
|ξ|2WH

ε (x, ξ) dξ = ε2 |∇uε|2 ∗ γε(x)− ε2

4
|uε|2 ∗∆γε(x) +

εd

2
|uε|2 ∗ γε(x)

which yields to the first equality. Keeping in mind that γε ∈ S, integrating in x yields∫∫
Rd×Rd

|ξ|2WH
ε (x, ξ) dξdx = ε2

∫
Rd
|∇uε(x)|2 dx

∫
Rd
γε(y) dy − ε2

4

∫
Rd
|uε(x)|2 dx

∫
Rd

∆γε(y) dy

+
εd

2

∫
Rd
|uε(x)|2 dx

∫
Rd
γε(y) dy

= ε2||∇uε||2L2 +
εd

2
||uε||2L2 .

A.1.2 Scalar second momentum: H1 case

In the same way, we can still consider
∫
Rd |ξ|

2WH
ε (x, ξ) dξ even for uε ∈ H1. However, it could still be

equal to +∞. The first part will be to show that this is not the case.

For fixed ε > 0, take a sequence of functions uε,k in H2 converging to uε in H1 when k →∞. Using

the notation Wε,k (resp. WH
ε,k) for the Wigner Transform (resp. the Husimi Transform) of the functions of

the sequence, we first show that they converge uniformly to the Wigner Transform Wε (resp. the Husimi

Transform WH
ε ) of uε. For x, ξ ∈ Rd

|Wε,k(x, ξ)−Wε(x, ξ)| = |Fzρ̃ε,k(x, ξ)−Fzρ̃ε(x, ξ)|

≤ C||ρ̃ε,k(x, .)− ρ̃ε(x, .)||L1

≤ C
∣∣∣∣∣∣∣∣uε,k(x+

εz

2
)uε,k(x−

εz

2
)− uε(x+

εz

2
)uε(x−

εz

2
)

∣∣∣∣∣∣∣∣
L1
z

≤ C

(∣∣∣∣∣∣∣∣uε,k(x+
εz

2
)

(
uε,k(x−

εz

2
)− uε(x−

εz

2
)

)∣∣∣∣∣∣∣∣
L1
z

+

∣∣∣∣∣∣∣∣(uε,k(x+
εz

2
)− uε(x+

εz

2
)
)
uε(x−

εz

2
)

∣∣∣∣∣∣∣∣
L1
z

)

≤ C
(∣∣∣∣∣∣uε,k(x+

εz

2
)
∣∣∣∣∣∣
L2
z

∣∣∣∣∣∣uε,k(x− εz

2
)− uε(x−

εz

2
)
∣∣∣∣∣∣
L2
z

+
∣∣∣∣∣∣uε,k(x+

εz

2
)− uε(x+

εz

2
)
∣∣∣∣∣∣
L2
z

∣∣∣∣∣∣uε(x− εz

2
)
∣∣∣∣∣∣
L2
z

)
≤ Cε

(
||uε,k||L2 ||uε,k − uε||L2 + ||uε,k − uε||L2 ||uε||L2

)
≤ Cε ||uε,k − uε||L2 .
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Therefore, Wε,k converges uniformly to Wε with the bound

||Wε,k −Wε||L∞ ≤ Cε ||uε,k − uε||L2 ,

and the same kind of bound hold for the Husimi Transform:

||WH
ε,k −WH

ε ||L∞ = || (Wε,k −Wε) ∗Gε||L∞ ≤ ||Wε,k −Wε||L∞ ||Gε||L1 ≤ Cε ||uε,k − uε||L2 .

Thus, we can use Fatou lemma for |ξ|2WH
ε,k(x, ξ), which leads to∫

Rd
|ξ|2WH

ε (x, ξ) dξ ≤ lim inf
k→∞

∫
Rd
|ξ|2WH

ε,k(x, ξ) dξ.

The previous calculus yields∫
Rd
|ξ|2WH

ε,k(x, ξ) dξ = ε2 |∇uε,k|2 ∗ γε(x)− ε2

4
|uε,k|2 ∗∆γε(x) +

εd

2
|uε,k|2 ∗ γε(x).

But uε,k −→
k→∞

uε in H1, so |∇uε,k|2 −→
k→∞

|∇uε|2 and |uε,k|2 −→
k→∞

|uε|2 in L1. Those limits show that

the right hand side of the previous equality goes to the good term when k →∞, which means that∫
Rd
|ξ|2WH

ε (x, ξ) dξ ≤ ε2 |∇uε|2 ∗ γε(x)− ε2

4
|uε|2 ∗∆γε(x) +

εd

2
|uε|2 ∗ γε(x) <∞.

Therefore, the map

H1 → R+

uε 7→
∫
Rd
|ξ|2WH

ε (x, ξ) dξ

is well-defined for every x ∈ Rd. Moreover, it is a non-negative quadratic form because Wε and then also

WH
ε are quadratic. Furthermore, it is continuous thanks to the previous inequality which leads to∫

Rd
|ξ|2WH

ε (x, ξ) dξ ≤ Cε||uε||2H1 .

Thus, the equality (2.19), which is true in H2 dense subspace in H1, also holds in H1 since the right hand

side is also continuous.

A.1.3 Vector second momentum: H2 case

With the same hypothesis, we can consider
∫
Rd ξiξjW

H
ε (x, ξ) dξ as we now know that ξiξjWH

ε (x, ξ)

is integrable thanks to the previous equality, and in the same way, we have for uε ∈ H2 and for every

x ∈ Rd: ∫
Rd
ξiξjW

H
ε (x, ξ) dξ =

∫
Rd
ξiξj (Wε ∗ξ γε ∗x γε)(x, ξ) dξ

=

(∫
Rd
ξiξjWε ∗ξ γε dξ

)
∗x γε(x),

the exchange of integral is rigorous with the same kind of estimation as previously. Moreover,∫
Rd
ξiξjWε(x, .) ∗ξ γε dξ = −

∫
Rd
Fz→ξ

(
∂zi∂zj

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)))
dξ

= −
[
∂zi∂zj

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

))]∣∣∣∣
z=0

.
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Then we have

∂zi∂zj

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

))
=
ε

2
∂zi

(
∂juε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
−uε

(
x+

ε

2
z
)
∂juε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
− uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
zj exp

(
−ε |z|

2

4

))

=
ε2

4

[
∂i∂juε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
+ uε

(
x+

ε

2
z
)
∂i∂juε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
+ uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
zizj exp

(
−ε |z|

2

4

)
− ∂iuε

(
x+

ε

2
z
)
∂juε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
− ∂juε

(
x+

ε

2
z
)
∂iuε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
− ∂iuε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
zj exp

(
−ε |z|

2

4

)
− ∂juε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)
zi exp

(
−ε |z|

2

4

)
+ uε

(
x+

ε

2
z
)
∂iuε

(
x− ε

2
z
)
zj exp

(
−ε |z|

2

4

)
+uε

(
x+

ε

2
z
)
∂juε

(
x− ε

2
z
)
zi exp

(
−ε |z|

2

4

)]
− εδij

2
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

)
,

which yields[
∂zi∂zj

(
uε

(
x+

ε

2
z
)
uε

(
x− ε

2
z
)

exp

(
−ε |z|

2

4

))]∣∣∣∣
z=0

=
ε2

4

[
∂i∂juε (x) uε (x) + uε (x) ∂i∂juε (x)

−∂iuε (x) ∂juε (x)− ∂juε (x) ∂iuε (x)
]

− εδij
2
uε (x) uε (x)

=
ε2

4

[
∂i∂j

(
|uε|2

)
(x)− 4 Re

(
∂iuε (x) ∂juε (x)

)]
− εδij

2
|uε(x)|2.

Therefore, in the same way as previously,∫
Rd
ξiξjW

H
ε (x, ξ) dξ = ε2 Re

(
∂iuε (x) ∂juε (x)

)
∗ γε(x)− ε

2

4
|uε|2 ∗ ∂i∂jγε(x) +

εδij
2
|uε|2 ∗ γε(x),

and ∫∫
Rd×Rd

ξiξjW
H
ε (x, ξ) dξdx = ε2

∫
Rd

Re
(
∂iuε (x) ∂juε (x)

)
dx+

εδij
2
||uε||2L2 .

A.1.4 Vector second momentum: H1 case

The generalization of this equality is similar to the end of the previous generalization for the scalar second

momentum. The map

H1 → R

uε 7→
∫
Rd
ξiξjW

H
ε (x, ξ) dξ

is a well-defined, continuous quadratic form thanks to the previous equality for the scalar second momen-

tum. Then, the equality made for uε ∈ H2 also hold for uε ∈ H1.
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A.2 Second part: first momentum in ξ

We know that
∫
Rd |ξ|

2WH
ε (x, ξ) dξ < ∞ by the previous proof and also that

∫
RdW

H
ε (x, ξ) dξ < ∞,

therefore we can consider
∫
Rd ξ W

H
ε (x, ξ) dξ. Then:∫

Rd
ξ WH

ε (x, ξ) dξ =

∫
Rd
ξ (Wε ∗ξ γε ∗x γε)(x, ξ) dξ

=

(∫
Rd
ξ Wε ∗ξ γε dξ

)
∗x γε,

the integral exchange being rigorous with the same kind of calculus as before, which infers that:∫
Rd
ξ WH

ε (x, ξ) dξ =

(
−i ∇z

(
uε

(
.+

ε

2
z
)
uε

(
.− ε

2
z
)

exp

(
−ε |z|

2

4

))∣∣∣∣
z=0

)
∗x γε

= ε Im (∇uε uε) ∗ γε(x)

and therefore the first equality, the second one being obvious by integrating this result.

A.3 Third part: second momentum in x

In the same way, as WH
ε is non-negative, we have, thanks to Proposition 2.2,∫∫

Rd×Rd
|x|2WH

ε (x, ξ) dxdξ =

∫
Rd
|x|2

(∫
Rd
WH
ε (x, ξ) dξ

)
dx

=

∫
Rd
|x|2 |uε|2 ∗ γε(x) dx

=

∫∫
Rd×Rd

|x|2 |uε(x− y)|2 ∗ γε(y) dydx.

Therefore∫∫
Rd×Rd

|x|2WH
ε (x, ξ) dxdξ −

∫∫
Rd×Rd

|x− y|2 |uε(x− y)|2 ∗ γε(y) dydx

=

∫∫
Rd×Rd

(2 (x− y) · y + |y|2) |uε(x− y)|2 ∗ γε(y) dydx

= 2

(∫
Rd
x |uε(x)|2 dx

)
·
(∫

Rd
y γε(y) dy

)
+ ||uε||2L2

∫
Rd
|y|2 γε(y) dy

=
εd

2
||uε||2L2

because
∫
Rd y γε(y) dy = 0 and

∫
Rd |y|

2 γε(y) dy = εd
2 . The proof is complete as soon as we observe that∫∫

Rd×Rd
|x− y|2 |uε(x− y)|2 ∗ γε(y) dydx = |||x|2|uε(x)|2||L1

48



Appendix B

Proof of the convergence of the p-th
moment

We now prove the convergence of the p-th moment of ρ̃(t) to the p-th moment of γ2 for all p ∈ [1, 2). The

proof is actually a straightforward consequence of the following lemma:

Lemma B.1 (Convergence of the p-th moment). Let (fn) a sequence in L1(Rd) and f ∈ L1(Rd)
such that fn ⇀

n→∞
f in L1. Assume also that there exists q > 0 and C independent of n such that∫

Rd |x|
q |fn(x)| dx ≤ C. Then, for all p ∈ (0, q),∫

Rd
|x|p fn(x) dx −→

n→∞

∫
Rd
|x|p f(x) dx

Proof. Take ε > 0, R > 0 and p ∈ (0, q). Then cutting each integrals in two:∣∣∣∣∫
Rd
|x|p fn(x) dx−

∫
Rd
|x|p f(x) dx

∣∣∣∣ ≤
∣∣∣∣∣
∫
B(0,R)

|x|p fn(x) dx−
∫
B(0,R)

|x|p f(x) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
B(0,R)c

|x|p fn(x) dx−
∫
B(0,R)c

|x|p f(x) dx

∣∣∣∣∣ .
But then, ∣∣∣∣∣

∫
B(0,R)c

|x|p fn(x) dx

∣∣∣∣∣ ≤
∫
B(0,R)c

|x|p |fn|(x) dx

≤
∫
B(0,R)c

|x|p |x|
q−p

Rq−p
|fn(x)| dx

≤ 1

Rq−p

∫
Rd
|x|q |fn(x)| dx

≤ C

Rq−p

Thanks to the bound
∫
Rd |x|

q |fn(x)| dx ≤ C, it is well known that
∫
Rd |x|

q |f(x)| dx ≤ C, and therefore

we have the same bound as previously for
∫
B(0,R)c |x|

p f(x) dx. Then, take R > 0 such that 2C
Rq−p ≤

ε
2 .

Therefore,∣∣∣∣∫
Rd
|x|p fn(x) dx−

∫
Rd
|x|p f(x) dx

∣∣∣∣ ≤
∣∣∣∣∣
∫
B(0,R)

|x|p fn(x) dx−
∫
B(0,R)

|x|p f(x) dx

∣∣∣∣∣+
ε

2
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Finally,∫
B(0,R)

|x|p fn(x) dx =

∫
Rd
1B(0,R)|x|p fn(x) dx −→

n→∞

∫
Rd
1B(0,R)|x|p f(x) dx =

∫
B(0,R)

|x|p f(x) dx,

because 1B(0,R)|x|p ∈ L∞(Rd). Therefore, take N such that for all n ≥ N ,∣∣∣∣∣
∫
B(0,R)

|x|p fn(x) dx−
∫
B(0,R)

|x|p f(x) dx

∣∣∣∣∣ ≤ ε

2
,

which yields for all n ≥ N , ∣∣∣∣∫
Rd
|x|p fn(x) dx−

∫
Rd
|x|p f(x) dx

∣∣∣∣ ≤ ε.
The convergence is proven.
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Appendix C

Proof of Proposition 2.8

The main part of this proof is to prove the second part of the Proposition. Indeed, the computations that

will be done can be done reversely, which will show the first part. The only thing that remains to prove is

that c1 solution to (2.34) is C∞(R+), but this has already been done in [7].

Therefore, with the notation and hypothesis of the second part of Proposition 2.8, we calculate:

∂tf(t, x, ξ) =

[
−dċ1(t)

c1(t)
− d∂tc2(t, x)

c2(t, x)
+ 2

ċ1(t) |x− b1(t)|2

c1(t)3
+ 2

ḃ1(t) · (x− b1(t))

c1(t)2

+2
∂tc2(t, x) |ξ − b2(t, x)|2

c2(t, x)3
+ 2

∂tb2(t, x) · (ξ − b2(t, x))

c2(t, x)2

]
f(t, x, ξ),

∂xf(t, x, ξ) =

[
−2

x− b1(t)

c1(t)2
+ 2 ∂xb2(t, x)

ξ − b2(t, x)

c2(t, x)2
+ 2 ∂xc2(t, x)

(ξ − b2(t, x))2

c2(t, x)3

]
f(t, x, ξ),

∂ξf(t, x, ξ) = −2
ξ − b2(t, x)

c2(t)2
f(t, x, ξ),

ρ(t, x) =
1√

π c1(t)
e
− (x−b1(t))

2

c1(t)
2 ⇒ ln ρ(t, x) = −(x− b1(t))2

c1(t)2
− ln(

√
π c1(t))

⇒ ∂x(ln ρ)(t, x) = −2
x− b1(t)

c1(t)

Putting all those equalities in the equation (1.1) leads us to an equation which is of the form

P (t, x, ξ)f(t, x, ξ) = 0

where P is a function such that for every (t, x), P (t, x, .) is polynomial of degree at most 3. Since

f(t, x, ξ) > 0 for every (t, x, ξ), there holds P = 0 and therefore for every (t, x), the coefficients of the

polynomial function p(t, x, .) are null. In particular, the coefficient of higher degree comes from the term

ξ ∂xf and is

2
∂xc2(t, x)

c2(t, x)3
.

We supposed that c2 > 0, therefore

∂xc2(t, x) = 0, for all (t, x),
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and thus c2 does not depend on t. We now take a more suitable basis to get null coefficients for the

polynomial function, of degree at most 2, ξ 7→ P (t, x, ξ):
(
(ξ − b2(t, x))2, ξ − b2(t, x), 1

)
. Again, the

coefficients in this basis are null, which yields for (ξ − b2(t, x))2:

2
ċ2(t)

c2(t)3
+ 2

∂xb2(t, x)

c2(t, x)2
= 0.

This equation leads to

∂xb2(t, x) = − ċ2(t)

c2(t)
,

and then, there exists a function p0 = p0(t) such that:

b2(t, x) = − ċ2(t)

c2(t)
x+ p0(t), for all (t, x).

The assumption on the regularity of b2 shows that p0 ∈ C1([0, T )). But then, we also get thanks to the

same assumption and the assumption on the regularity of c2:

ċ2(t) = c2(t) (p0(t)− b2(t, 1)) ∈ C1([0, T )).

Therefore, c2 ∈ C2([0, T )). Now, watching the coefficient for (ξ − b2(t, x)), we get

2
∂tb2(t, x)

c2(t)2
− 2

x− b1(t)

c1(t)2
+ 2

b2(t, x) ∂xb2(t, x)

c2(t)2
− 4λ

x− b1(t)

c1(t)2 c2(t)2
= 0, for all (t, x).

In terms of ∂tb2, this reads

∂tb2(t, x) =

(
1 +

2λ

c2(t)2

)
c2(t)2

c1(t)2
(x− b1(t))− b2(t, x) ∂xb2(t, x)

=

[(
1 +

2λ

c2(t)2

)
c2(t)2

c1(t)2
− ċ2(t)2

c2(t)2

]
x−

(
1 +

2λ

c2(t)2

)
c2(t)2

c1(t)2
b1(t) +

ċ2(t)

c2(t)
p0(t).

However, the previous expression of b2 allows us to compute another expression of ∂tb2:

∂tb2(t, x) =

(
− c̈2(t)

c2(t)
+
ċ2(t)2

c2(t)2

)
x+ ṗ0(t).

This yields the following system of equations for all t ≥ 0:(
1 +

2λ

c2(t)2

)
c2(t)2

c1(t)2
= − c̈2(t)

c2(t)
+ 2

ċ2(t)2

c2(t)2
, (C.1)

ṗ0(t) = −
(

1 +
2λ

c2(t)2

)
c2(t)2

c1(t)2
b1(t) +

ċ2(t)

c2(t)
p0(t). (C.2)


In particular, the second equation shows that ṗ0 ∈ C1([0, T )) (since the right-hand side is) and is actually

an ordinary differential equation of order 1. The solution is well-known as soon as we remark that
ċ2
c2

= d
dt(ln c2) and reads:

p0(t) = c2(t)

(
C0 −

∫ t

0

(
1 +

2λ

c2(s)2

)
c2(s)2

c1(s)2

b1(s)

c2(s)
ds

)
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and thanks to the first equation, we can expand it:

p0(t) = c2(t)

(
C0 −

∫ t

0

(
− c̈2(s)

c2(s)
+ 2

ċ2(s)2

c2(s)2

)
b1(s)

c2(s)
ds

)
= c2(t)

(
C0 +

∫ t

0

d2

ds2

(
1

c2(s)

)
b1(s) ds

)
= c2(t)C1 +

ċ2(t)

c2(t)
b1(t)− c2(t)

∫ t

0

ċ2(s)

c2(s)2
ḃ1(s) ds,

with C1 = C0 − ċ2(0)
c2(0)2

b1(0) with an integration by parts. Last, the constant in ξ gives the following

equation:

− ċ1(t)

c1(t)
− ċ2(t)

c2(t)
+ 2

ċ1(t)

c1(t)3
(x− b1(t))2 + 2

ḃ1(t)

c1(t)2
(x− b1(t))− 2

b2(t, x)

c1(t)2
(x− b1(t)) = 0 (C.3)

But since we know that b2 is affine in x, the left-hand side is a polynomial function in x of degree 2

for all t ∈ [0, T ). Therefore, the coefficients in a suitable basis are null. This time, we take the basis:(
(x− b1(t))2, x− b1(t), 1

)
. For the first one and for the constants, we get

2
ċ1(t)

c1(t)3
+ 2

ċ2(t)

c2(t)3
= 0,

− ċ1(t)

c1(t)
− ċ2(t)

c2(t)
= 0.

Those 2 equations actually reduce in a single one, for instance

d
dt

(c1 c2) = 0,

and therefore, for all t ∈ [0, T ),

c1(t) c2(t) = c1(0) c2(0) =: C̃ > 0.

We already know that c2 is C2 and positive, therefore so is c1. Coming back to (C.1), we now have

c̈2 = 2
ċ2

2

c2
− 2λ

C̃
c3

2 −
c5

2

C̃
,

which reads in terms of c1

c̈1 =
2λ

c1
+
C̃2

c3
1

,

which is (2.34). Last, the final equation we have comes from the coefficient for (x− b1(t)):

2
ḃ1(t)

c1(t)2
+ 2

ċ2(t)

c1(t)2 c2(t)
b1(t)− p0(t)

c1(t)2
= 0, for all t ≥ 0.

This leads to

ḃ1 = − ċ2

c2
b1 + p0.

All the terms in the right-hand side are C1([0, T )), therefore so is ḃ1, which yields to the C2-regularity of

b1. Therefore, we can again expand the expression for p0 found previously with another integration by

parts:

p0(t) = C2 c2(t) +
ċ2(t)

c2(t)
b1(t) + ḃ1(t)− c2(t)

∫ t

0

b̈2(s)

c2(s)
ds,
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with C2 = C1 + 1
c2(0) Plugging this expression of p0 into the expression of ḃ1 leads to

C2 c2(t) = c2(t)

∫ t

0

b̈2(s)

c2(s)
ds.

Since c2 > 0, we then obtain C2 = 0 and b̈2
c2

= 0, which is b̈2 = 0. Thus, there exists B0, B1 constants

such that

b1 = B1 t+B0,

and this gives the final expression for p0 (and therefore for b2):

p0(t) = (B1 t+B0)
ċ2(t)

c2(t)
+B1.

�
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