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General Vlasov Equation

Vlasov Equation

∂f

∂t
+ ξ · ∇x f + F0 · ∇ξf = 0.

with force term F0 = F0(t, x , ξ)

Describes the evolution of a distribution function of particles (for
instance in plasma) in phase space

In general, a solution to this equation is a time-depending
(non-negative) measure: for all t, f (t) ∈M(Rd

x × Rd
ξ )

If F0 = −∇xV where V = V (t, x), we call V a potential.

F0 (or V ) may depend on f itself.
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Logarithmic Vlasov Equation

Non-Linear Vlasov Equation with Logarithmic Non-Linearity

∂f

∂t
+ ξ · ∇x f − λ∇x(ln ρ) · ∇ξf = 0, (logVla)

with λ > 0 and

ρ(t, x) =

∫
Rd

f (t, x , dξ).

Remark

Non-linear

Highly singular

Formalization of the equation very difficult
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Link with Euler and Schrödinger

Definition (Mono-Kinetic Measure)

A mono-kinetic measure is a measure of the form

f (t, dx , dξ) = ρ(t, x)dx ⊗ δξ=v(t,x),

with space distribution function ρ and speed v .

Proposition

A mono-kinetic measure is solution to (logVla) iff (ρ, v) is solution of the
Isothermal Euler System{

∂tρ+∇x · (ρv) = 0,
∂t(ρv) +∇x · (ρv ⊗ v) + λ∇xρ = 0.

(IES)

Logarithmic Schrödinger Equation (ε > 0)

iε ∂tuε +
ε2

2
∆uε = λ uε ln |uε|2. (logNLSε)
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Wigner Transform

Definition (Wigner Transform [8, 7, 1, 6, 5])

For uε ∈ L2(Rd), the Wigner Transform Wε is defined by

Wε(x , ξ) =
1

(2π)d

∫
Rd

e−iξ·zuε
(
x +

εz

2

)
uε
(
x − εz

2

)
dz . (WT)

Real-valued function on the phase space.

Not non-negative in general. However, it becomes non-negative
when ε→ 0: if (uε)ε>0 is a bounded sequence in L2, then up to a
subsequence Wε ⇀W ∈M(Rd × Rd) in S ′.
Reaches good results in order to perform the Semi-Classical Limit: if

uε satisfies iε∂tuε + ε2

2 ∆uε = V0uε with V0 satisfying suitable
properties, then W verifies ∂tW + ξ · ∇xW −∇xV0 · ∇ξW = 0.
Such a result also holds in some non-linear cases.
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Solutions for the Logarithmic Schrödinger Equation

Theorem ([3, Theorem 1.5.])

Let λ > 0, u0 ∈ F(H1) ∩ H1(Rd). Then there exists a unique, global
solution u ∈ L∞loc(R,F(H1) ∩ H1(Rd)) of{

i ∂tu +
∆u

2
= λu ln |u|2,

u(0, x) = u0(x).

Moreover, u ∈ C(R, L2 ∩ H1
w(Rd)).

Remark

This result can easily be generalized to the general case ε > 0.
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Universal Dynamics

Theorem ([3, Theorem 1.7.])

For u0 6= 0, rescale the solution provided by the previous theorem to
v = v(t, y) by setting

u(t, x) =
1

τ(t)
d
2

||u0||L2

||γ||L2

v

(
t,

x

τ(t)

)
e i

τ̇(t)
τ(t)

|x|2

2 ,

where τ̈ = 2λ
τ , τ(0) = 1, τ̇(0) = 0, and γ(x) = e−

|x|2

2 . Then∫
Rd

 1
y
|y |2

 |v(t, y)|2 dy −→
t→∞

∫
Rd

 1
y
|y |2

 γ2(y) dy ,

|v(t, .)|2 ⇀
t→∞

γ2 weakly in L1(Rd).

Remark

τ(t) ∼
t→∞

2t
√
λ ln t : difference compared to the classical dispersion.
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Wigner Measure

Three questions:

Does the Wigner Transform of uε solution to (logNLSε) converge ?

Is this limit a solution to the Logarithmic Vlasov Equation ?

Does it have the same universal dynamics as previously said ?

The article of R. Carles and A. Nouri ([4]) goes along those intuitions in
two cases:

Far from the vacuum: positive answer to the first two questions.

A class of explicit solutions for d = 1: the Gaussian case.

Explicit solutions to (logNLSε).
Limit of the Wigner Transform : explicit mono-kinetic solution to
(logVla).
Similar dispersion
Up to a rescaling, strong convergence of ρ(t, x) =

∫
R W (t, x , dξ) to

γ2 = e−|x|
2

in L1(R).
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Logarithmic Vlasov Equation

Two questions:

Do any ”solutions” to (logVla) formally have the same universal
dynamics ?

What are the assumptions (the minimal properties) we need to make
the result rigorous ?

For the first question, we have two interesting cases:

The previous Gaussian case. In the context of the Vlasov Equation,
we call it the ”Gaussian-monokinetic” case.

A generalization of this case: the mono-kinetic case. This has been
done by R. Carles, K. Carrapatoso and M. Hillairet in [2].
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Assumptions and notations

Assumptions

λ > 0, ρ0 ≥ 0,
√
ρ0 ∈ F(H1) ∩ H1(Rd) \ {0} ,

φ0 ∈W 1,1
loc (Rd),

√
ρ0∇φ0 ∈ L2(Rd),

(H1)

Notations

uε,0 =
√
ρ0 e

i
φ0
ε ∈ F(H1) ∩ H1(Rd) \ {0}.

uε solution of (logNLSε) with uε(0) = uε,0.

uε(t, x) =
1

τ(t)
d
2

||√ρ0||L2

||γ||L2

vε

(
t,

x

τ(t)

)
e i

τ̇(t)
τ(t)

|x|2

2 ε ,

where we recall γ(x) = e−
|x|2

2 .

Wε (resp. W̃ε) the Wigner Transform of uε (resp. vε).

(N1)
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First properties

Proposition

Under the assumptions (H1) and notations (N1), there exists
W̃ ∈ L∞((0,∞),M(Rd × Rd)) such that, up to a subsequence,

W̃ε ⇀
ε→0

W̃ in L1
loc((0,∞),S ′w−∗(Rd × Rd))

Theorem (Integrability and regularity properties)

Under the assumptions (H1) and notations (N1), there holds for W̃ :∫∫
Rd×Rd

W̃ (t, dy , dη) = ||γ2||L1 for a.e. t ≥ 0,

ρ̃(t, y) :=

∫
Rd

W̃ (t, y , dη) ∈ C(R+,W−1,1 ∩ L1
w (Rd)),∫

Rd

ρ̃(t, y)
(
|y |2 + |ln ρ̃(t, y)|

)
dy ≤ C .
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Main Theorem

Theorem (Universal Dynamics for a Wigner Measure of (logNLSε))

Under the assumptions (H1) and notations (N1), there holds for the limit

W̃ of W̃ε and ρ̃ =
∫
Rd W̃ (t, y , dη), with γ(x) = e−

|x|2

2 :∫
Rd

(
1
y

)
ρ̃(t, y) dy −→

t→∞

∫
Rd

(
1
y

)
γ2(y) dy ,

and
ρ̃(t, .) ⇀

t→∞
γ2 weakly in L1(Rd).

Remarks

We still have the same dispersion rate in (t
√

ln t)
d
2 .

The lack of bounds of a higher moment in our proof does not allow
us to reach the convergence of the quadratic momentum.
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Integrability and regularity

Eεkin(t) =
ε2

2 τ(t)2
||∇vε||2L2 , Eεent(t) =

∫
Rd

|vε(t, y)|2 ln

∣∣∣∣vε(t, y)

γ(y)

∣∣∣∣2,
Eε(t) = Eεkin(t) + λ Eεent(t).

Ėε = −2
τ̇(t)

τ(t)
Eεkin.

Lemma

Under the assumptions (H1) and notations (N1), there holds∫∫
Rd×Rd

W̃ (t, dy , dη) = ||γ2||L1 for a.e. t ≥ 0,
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Rd
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End of the proof

ρε = |vε|2, Jε = Im(ε vε∇vε).

We compute:
∂tρε +

1

τ 2(t)
∇ · Jε = 0,

∂tJε + λ∇ρε + 2λ y ρε =
ε2

4 τ 2(t)
∆∇ρ− ε2

τ 2(t)
∇ · (Re(∇vε ⊗∇vε)).

Passing the two previous equations to the limit ε→ 0:

∂tρ+
1

τ 2(t)
∇ · J = 0,

∂tJ + λ∇ρ+ 2λ y ρ = −∇ · ν.

Change of time variable: s = 1
2 ln τ(t).

Unique weak limit ρ̃∞ = γ2(y) of ρ̃(s + ., .) when s →∞. �
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Gaussian-Gaussian Solutions

Proposition (Gaussian-Gaussian solutions)

Solutions to (logVla) of the form

f (t, x , ξ) =
1

π c1(t) c2(t)
exp

[
−|x − b1(t)|2

c1(t)2
− |ξ − b2(t, x)|2

c2(t)2

]
can be computed explicitly. Moreover, the functions ci and bi (i = 1, 2)
are uniquely defined once the initial data (which can be reduced to 5
parameters) have been provided.

Remark

c1(t) ∼
t→∞

2 t
√
λ ln t ∼

t→∞
τ(t).

Strong convergence to γ2 in L1 after rescaling.

Other ”generalization” of the Gaussian-monokinetic case.
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Assumptions

Mass conservation :

d

dt

(∫∫
Rd×Rd

f (t, dx , dξ)

)
= 0, (H2)

Energy conservation :

d

dt

(
1

2

∫∫
Rd×Rd

|ξ|2 f (t, dx , dξ) + λ

∫
Rd

ρ(t, x) ln ρ(t, x)dx

)
= 0, (H3)

Equations on ρ and J :

∂tρ(t, x) +∇x ·
(∫

Rd

ξ f (t, x , dξ)

)
= 0, (H4)

∂t

∫
Rd

ξ f (t, x , dξ) +∇x ·
∫
Rd

ξ ⊗ ξ f (t, x , dξ) + λ∇xρ(t, x) = 0, (H5)
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Main result

Theorem (Universal Dynamics for the Logarithmic Vlasov Equation)

Assume that f = f (t, x , ξ) ∈ L∞loc((0,∞);MΣlog ∩M2 \ {0}) satisfies
(H2)-(H5). Rescale:

f (t, x , ξ) =
M

||γ2||L1

f̃

(
t,

x

τ(t)
, τ(t)ξ − τ̇(t)x

)
,

where M is the total mass. Then

ρ̃ ∈ L∞((0,∞), L1
2 ∩ L log L(Rd)) ∩ C(R+, L1

w (Rd)),∫
Rd

 1
y
|y |2

 ρ̃(t, y) dy −→
t→∞

∫
Rd

 1
y
|y |2

 γ2(y) dy ,

ρ̃(t, .) ⇀
t→∞

γ2 weakly in L1(Rd).
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Summary

The Wigner Transform of the solutions of (logNLSε) converges and
the dynamics of the limit is universal, similar to the universal
dynamics found for (logNLSε), with a weak convergence to γ2 in L1.

Universal dynamics are proven in the same way for the Logarithmic
Vlasov Equation by assuming some formal properties, completed by a
new class of explicit Gaussian solutions whose convergence is strong.

Perspectives:

Convergence to γ2: uniform in ε ? In Wasserstein distance ?

Analytic initial data: mono-kinetic Wigner Measure for small time ?

The link between Wigner Measure and Vlasov equation still needs to
be proven rigorously.
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